Concept explainers
Two point charges, q1 = −2.0 μC and q2 = 2.0 μC, are placed on the x axis at x = 1.0 m and x = −1.0 m, respectively (Fig. P26.24).
- a. What are the electric potentials at the points P (0, 1.0 m) and R (2.0 m, 0)?
- b. Find the work done in moving a 1.0-μC charge from P to R along a straight line joining the two points.
- c. Is there any path along which the work done in moving the charge from P to R is less than the value from part (b)? Explain.
(a)
The electric potential at
Answer to Problem 24PQ
The electric potential at
Explanation of Solution
Write the expression for electric potential due to two charges.
Write the expression for distance between two points.
Conclusion:
Consider the figure 1 below.
Substitute,
Substitute,
Substitute,
Consider figure 2 given below.
Substitute,
Substitute,
Substitute,
Therefore, the electric potential at
(b)
The work done in moving a
Answer to Problem 24PQ
The work done in moving a
Explanation of Solution
The work done will be equal to change in potential energy between two points.
Write the expression for change in electric potential energy.
Here,
Conclusion:
Substitute,
Therefore, the work done in moving a
(c)
The path along which the work done is less than the value obtained in part (b).
Answer to Problem 24PQ
No, there is no other path through which the charge can move so that the work done is less than the value obtained part (b).
Explanation of Solution
Write the expression for work done in terms of change in potential energy.
The work done is depends on charge and the change in potential, and does not depends on the path followed by the particle.
Hence, there is no other path in which work done is less than
Conclusion:
Therefore, the work done is not depends on the path followed by the particle, and only depends on the change in potential. There is no other path with work done less than
Want to see more full solutions like this?
Chapter 26 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
- No chatgpt pls will upvotearrow_forwardair is pushed steadily though a forced air pipe at a steady speed of 4.0 m/s. the pipe measures 56 cm by 22 cm. how fast will air move though a narrower portion of the pipe that is also rectangular and measures 32 cm by 22 cmarrow_forwardNo chatgpt pls will upvotearrow_forward
- 13.87 ... Interplanetary Navigation. The most efficient way to send a spacecraft from the earth to another planet is by using a Hohmann transfer orbit (Fig. P13.87). If the orbits of the departure and destination planets are circular, the Hohmann transfer orbit is an elliptical orbit whose perihelion and aphelion are tangent to the orbits of the two planets. The rockets are fired briefly at the depar- ture planet to put the spacecraft into the transfer orbit; the spacecraft then coasts until it reaches the destination planet. The rockets are then fired again to put the spacecraft into the same orbit about the sun as the destination planet. (a) For a flight from earth to Mars, in what direction must the rockets be fired at the earth and at Mars: in the direction of motion, or opposite the direction of motion? What about for a flight from Mars to the earth? (b) How long does a one- way trip from the the earth to Mars take, between the firings of the rockets? (c) To reach Mars from the…arrow_forwardNo chatgpt pls will upvotearrow_forwarda cubic foot of argon at 20 degrees celsius is isentropically compressed from 1 atm to 425 KPa. What is the new temperature and density?arrow_forward
- Calculate the variance of the calculated accelerations. The free fall height was 1753 mm. The measured release and catch times were: 222.22 800.00 61.11 641.67 0.00 588.89 11.11 588.89 8.33 588.89 11.11 588.89 5.56 586.11 2.78 583.33 Give in the answer window the calculated repeated experiment variance in m/s2.arrow_forwardNo chatgpt pls will upvotearrow_forwardCan you help me solve the questions pleasearrow_forward
- Can you help me solve these questions please so i can see how to do itarrow_forwardHow can i solve this if n1 (refractive index of gas) and n2 (refractive index of plastic) is not known. And the brewsters angle isn't knownarrow_forward2. Consider the situation described in problem 1 where light emerges horizontally from ground level. Take k = 0.0020 m' and no = 1.0001 and find at which horizontal distance, x, the ray reaches a height of y = 1.5 m.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning