Concept explainers
Given
(a) Estimate the step-size required to maintain stability using the explicit Euler method.
(b) If
(a)
![Check Mark](/static/check-mark.png)
To calculate: The step-size required to maintain stability of differential equation,
Answer to Problem 1P
Solution:
The step-size required to maintain stability of the given differential equation is
Explanation of Solution
Given Information:
Differential equation,
Formula used:
The stability of formula depends upon step size h and step size must satisfy the condition,
Calculation:
Consider the differential equation,
Now, it is known that if
So, using Euler’s method,
Thus,
The stability of formula depends upon step size h and step size must satisfy the condition,
Now, the first order differential equation given is,
The step size required to maintain the stability is,
Hence,
(b)
![Check Mark](/static/check-mark.png)
To calculate: The solution of the differential equation,
Answer to Problem 1P
Solution:
The solution of the given differential equation is:
Explanation of Solution
Given Information:
The differential equation,
Formula used:
The implicit Euler’s formula is,
Calculation:
Consider the differential equation,
The implicit Euler’s formula is,
Implicit formula for the given differential equation can be written as,
Simplify further,
Substitute
Thus,
Substitute
As
Use excel to find all the iteration with step size
Step 1. First put value of x in the excel as shown below,
Step 2. Now name the column B as y and go to column B2 and put value 0.
Step 3. Now, go to column B3 and write the formula as,
=(B2+(19999.9*(EXP(-A3))))/20001
Then, Press enter and drag the column up to the
Thus, all the iterations are as shown below,
Want to see more full solutions like this?
Chapter 26 Solutions
EBK NUMERICAL METHODS FOR ENGINEERS
- 1. True or false: (a) if E is a subspace of V, then dim(E) + dim(E+) = dim(V) (b) Let {i, n} be a basis of the vector space V, where vi,..., are all eigen- vectors for both the matrix A and the matrix B. Then, any eigenvector of A is an eigenvector of B. Justify. 2. Apply Gram-Schmidt orthogonalization to the system of vectors {(1, 2, -2), (1, −1, 4), (2, 1, 1)}. 3. Suppose P is the orthogonal projection onto a subspace E, and Q is the orthogonal projection onto the orthogonal complement E. (a) The combinations of projections P+Q and PQ correspond to well-known oper- ators. What are they? Justify your answer. (b) Show that P - Q is its own inverse. 4. Show that the Frobenius product on n x n-matrices, (A, B) = = Tr(B*A), is an inner product, where B* denotes the Hermitian adjoint of B. 5. Show that if A and B are two n x n-matrices for which {1,..., n} is a basis of eigen- vectors (for both A and B), then AB = BA. Remark: It is also true that if AB = BA, then there exists a common…arrow_forwardQuestion 1. Let f: XY and g: Y Z be two functions. Prove that (1) if go f is injective, then f is injective; (2) if go f is surjective, then g is surjective. Question 2. Prove or disprove: (1) The set X = {k € Z} is countable. (2) The set X = {k EZ,nЄN} is countable. (3) The set X = R\Q = {x ER2 countable. Q} (the set of all irrational numbers) is (4) The set X = {p.√2pQ} is countable. (5) The interval X = [0,1] is countable. Question 3. Let X = {f|f: N→ N}, the set of all functions from N to N. Prove that X is uncountable. Extra practice (not to be submitted). Question. Prove the following by induction. (1) For any nЄN, 1+3+5++2n-1 n². (2) For any nЄ N, 1+2+3++ n = n(n+1). Question. Write explicitly a function f: Nx N N which is bijective.arrow_forward3. Suppose P is the orthogonal projection onto a subspace E, and Q is the orthogonal projection onto the orthogonal complement E. (a) The combinations of projections P+Q and PQ correspond to well-known oper- ators. What are they? Justify your answer. (b) Show that P - Q is its own inverse.arrow_forward
- The table shows the average price per pound for honey at a store from 2014 to 2017. Describe the relationship between the data.arrow_forwardGiven r = e−p2−q2, p = es, q = e−s, find dr/dsarrow_forwardAssignment Brief: 1. Use the trapezium rule with five ordinates (four strips) to find an approximation to giving your answer to 2 decimal places. 1 dx x³ +3arrow_forward
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage