Probability & Statistics with R for Engineers and Scientists
Probability & Statistics with R for Engineers and Scientists
1st Edition
ISBN: 9780321852991
Author: Michael Akritas
Publisher: PEARSON
Question
Book Icon
Chapter 2.6, Problem 1E
To determine

Identify whether the events E1 and E2 are independent or not.

Expert Solution & Answer
Check Mark

Answer to Problem 1E

The events E1 and E2 are not independent.

Explanation of Solution

Independent events:

Let A and B be two events are said to be independent if, if occurrence of event A does not influence occurrence of events B then events are referred as independent. The expression is, P(B|A)=P(B)

The event E1 denotes the first diode selected has efficiency below 0.28, and E2 denotes the second diode selected has efficiency above 0.35.

A sample of 10 laser diodes in which two have efficiency below 0.28, six have efficiency between 0.28 and 0.35, and two have efficiency above 0.35.

Two diodes are selected at random and without replacement.

The probability that the second diode selected has efficiency above 0.35 is,

P(E2)=210

The probability that the second diode selected has efficiency above 0.35 given that the first diode selected has efficiency below 0.28 is,

P(E2|E1)=29

It is clear that, P(E2|E1)P(E2) and events are not independent.

Hence, the events E1 and E2 are not independent.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
QUESTION 18 - 1 POINT Jessie is playing a dice game and bets $9 on her first roll. If a 10, 7, or 4 is rolled, she wins $9. This happens with a probability of . If an 8 or 2 is rolled, she loses her $9. This has a probability of J. If any other number is rolled, she does not win or lose, and the game continues. Find the expected value for Jessie on her first roll. Round to the nearest cent if necessary. Do not round until the final calculation. Provide your answer below:
5 of 5 (i) Let a discrete sample space be given by Ω = {ω1, 2, 3, 4}, Total marks 12 and let a probability measure P on be given by P(w1) 0.2, P(w2) = 0.2, P(w3) = 0.5, P(w4) = 0.1. = Consider the random variables X1, X2 → R defined by X₁(w3) = 1, X₁(4) = 1, X₁(w₁) = 1, X₁(w2) = 2, X2(w1) = 2, X2(w2) = 2, X2(W3) = 1, X2(w4) = 2. Find the joint distribution of X1, X2. (ii) [4 Marks] Let Y, Z be random variables on a probability space (N, F, P). Let the random vector (Y, Z) take on values in the set [0,1] × [0,2] and let the joint distribution of Y, Z on [0,1] × [0,2] be given by 1 dPy,z(y, z) (y²z + y²²) dy dz. Find the distribution Py of the random variable Y. [8 Marks]
Total marks 16 5. Let (,,P) be a probability space and let X : → R be a random variable whose probability density function is given by f(x) = }}|x|e¯|×| for x Є R. (i) (ii) Find the characteristic function of the random variable X. [8 Marks] Using the result of (i), calculate the first two moments of the random variable X, i.e., E(X") for n = 1, 2. (iii) What is the variance of X? [6 Marks] [2 Marks]
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
A First Course in Probability (10th Edition)
Probability
ISBN:9780134753119
Author:Sheldon Ross
Publisher:PEARSON
Text book image
A First Course in Probability
Probability
ISBN:9780321794772
Author:Sheldon Ross
Publisher:PEARSON