EBK CALCULUS & ITS APPLICATIONS
14th Edition
ISBN: 9780134507132
Author: Asmar
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 2.6, Problem 16E
To determine
The dimensions of an open rectangular box that minimizes the amount of material required for construction, when the volume of the box is
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
1. Show that the vector field
F(x, y, z)
=
(2x sin ye³)ix² cos yj + (3xe³ +5)k
satisfies the necessary conditions for a conservative vector field, and find a potential function for
F.
1. Newton's Law of Gravitation (an example of an inverse square law) states that the magnitude
of the gravitational force between two objects with masses m and M is
|F|
mMG
|r|2
where r is the distance between the objects, and G is the gravitational constant. Assume that the
object with mass M is located at the origin in R³. Then, the gravitational force field acting on
the object at the point r = (x, y, z) is given by
F(x, y, z) =
mMG
r3
r.
mMG
mMG
Show that the scalar vector field f(x, y, z) =
=
is a potential function for
r
√√x² + y² .
Fi.e. show that F = Vf.
Remark: f is the negative of the physical potential energy, because F = -V(-ƒ).
2. Suppose f(x) = 3x² - 5x. Show all your work for the problems below.
Chapter 2 Solutions
EBK CALCULUS & ITS APPLICATIONS
Ch. 2.1 - Does the slope of the curve in Fig. 17 increases...Ch. 2.1 - At which labelled point on the graph in Fig. 18 is...Ch. 2.1 - Exercises 1-4 refer to graphs (a)-(f) in Fig.19...Ch. 2.1 - Exercises 1-4 refer to graphs (a)-(f) in Fig.19...Ch. 2.1 - Exercises 1-4 refer to graphs (a)-(f) in Fig.19...Ch. 2.1 - Exercises 1-4 refer to graphs (a)-(f) in Fig.19...Ch. 2.1 - Describe each of the following graphs. Your...Ch. 2.1 - Describe each of the following graphs. Your...Ch. 2.1 - Describe each of the following graphs. Your...Ch. 2.1 - Describe each of the following graphs. Your...
Ch. 2.1 - Describe each of the following graphs. Your...Ch. 2.1 - Prob. 10ECh. 2.1 - Describe each of the following graphs. Your...Ch. 2.1 - Prob. 12ECh. 2.1 - Describe the way the slope changes as you move...Ch. 2.1 - Prob. 14ECh. 2.1 - Describe the way the slope changes on the graph in...Ch. 2.1 - Prob. 16ECh. 2.1 - Exercise 17 and 18 refer to the graph in Fig 20....Ch. 2.1 - Exercise 17 and 18 refer to the graph in Fig 20....Ch. 2.1 - Prob. 19ECh. 2.1 - In Exercises 19-22, draw the graph of a function...Ch. 2.1 - In Exercises 19-22, draw the graph of a function...Ch. 2.1 - Prob. 22ECh. 2.1 - Annual World Consumption of Oil The annual world...Ch. 2.1 - Prob. 24ECh. 2.1 - A Patients Temperature At noon, a childs...Ch. 2.1 - Prob. 26ECh. 2.1 - Blood Flow through the Brain One method of...Ch. 2.1 - Pollution Suppose that some organic waste products...Ch. 2.1 - Number of U.S. Farms Figure 22 gives to number of...Ch. 2.1 - Prob. 30ECh. 2.1 - Prob. 31ECh. 2.1 - Let P(t) be the population of a bacteria culture...Ch. 2.1 - In Exercises 3336, sketch the graph of a function...Ch. 2.1 - In Exercises 3336, sketch the graph of a function...Ch. 2.1 - In Exercises 3336, sketch the graph of a function...Ch. 2.1 - In Exercises 3336, sketch the graph of a function...Ch. 2.1 - Consider a smooth curve with no undefined points....Ch. 2.1 - If the function f(x) has a relative minimum at x=a...Ch. 2.1 - Technology Exercises Graph the function...Ch. 2.1 - Prob. 40ECh. 2.1 - Technology Exercises Simultaneously graph the...Ch. 2.2 - Make a good sketch of the function f(x) near the...Ch. 2.2 - The graph of f(x)=x3 is shown in Fig. 15. Is the...Ch. 2.2 - The graph of y=f(x) is shown in Fig. 16. Explain...Ch. 2.2 - Exercises 14 refer to the functions whose graphs...Ch. 2.2 - Exercises 14 refer to the functions whose graphs...Ch. 2.2 - Exercises 14 refer to the functions whose graphs...Ch. 2.2 - Exercises 14 refer to the functions whose graphs...Ch. 2.2 - Which one of the graph in Fig. 18 could represent...Ch. 2.2 - Which one of the graphs in Fig. 18 could represent...Ch. 2.2 - In Exercises 712, sketch the graph of a function...Ch. 2.2 - In Exercises 712, sketch the graph of a function...Ch. 2.2 - In Exercises 712, sketch the graph of a function...Ch. 2.2 - In Exercises 712, sketch the graph of a function...Ch. 2.2 - In Exercises 712, sketch the graph of a function...Ch. 2.2 - In Exercises 712, sketch the graph of a function...Ch. 2.2 - In Exercises 1318, use the given information to...Ch. 2.2 - In Exercises 1318, use the given information to...Ch. 2.2 - In Exercises 1318, use the given information to...Ch. 2.2 - In Exercises 1318, use the given information to...Ch. 2.2 - In Exercises 1318, use the given information to...Ch. 2.2 - In Exercises 1318, use the given information to...Ch. 2.2 - Refer to the graph in Fig. 19. Fill in each box of...Ch. 2.2 - The first and second derivatives of the function...Ch. 2.2 - Suppose that Fig. 20 contains the graph of y=s(t),...Ch. 2.2 - Suppose that Fig. 20 contains the graph of y=v(t),...Ch. 2.2 - 23. Refer to figure 21, Looking at the graph f(x),...Ch. 2.2 - In figure 22, the t axis represent the time in...Ch. 2.2 - 25. Exercises 2536 refer to Fig. 23, which...Ch. 2.2 - 26. Exercises 2536 refer to Fig. 23, which...Ch. 2.2 - 27. Exercises 2536 refer to Fig. 23, which...Ch. 2.2 - 28. Exercises 2536 refer to Fig. 23, which...Ch. 2.2 - 29. Exercises 2536 refer to Fig. 23, which...Ch. 2.2 - 30. Exercises 2536 refer to Fig. 23, which...Ch. 2.2 - 31. Exercises 2536 refer to Fig. 23, which...Ch. 2.2 - Prob. 32ECh. 2.2 - 33. Exercises 2536 refer to Fig. 23, which...Ch. 2.2 - 34. Exercises 2536 refer to Fig. 23, which...Ch. 2.2 - 35. Exercises 2536 refer to Fig. 23, which...Ch. 2.2 - Prob. 36ECh. 2.2 - 37. Level of Water from Melting Snow Melting snow...Ch. 2.2 - 38. Changes in Temperature T(t) is the temperature...Ch. 2.2 - Prob. 39ECh. 2.2 - Prob. 40ECh. 2.2 - Prob. 41ECh. 2.2 - 42. Match each observation (a)(e) with a...Ch. 2.2 - Prob. 43ECh. 2.2 - Drug Diffusion in the Bloodstream After a drug is...Ch. 2.2 - Prob. 45ECh. 2.2 - Prob. 46ECh. 2.3 - Which of the curves in Fig.15 could possibly be...Ch. 2.3 - Which of the curves in Fig.16 could be the graph...Ch. 2.3 - Each of the graphs of the functions in Exercises...Ch. 2.3 - Each of the graphs of the functions in Exercises...Ch. 2.3 - Each of the graphs of the functions in Exercises...Ch. 2.3 - Each of the graphs of the functions in Exercises...Ch. 2.3 - Each of the graphs of the functions in Exercises...Ch. 2.3 - Each of the graphs of the functions in Exercises...Ch. 2.3 - Each of the graphs of the functions in Exercises...Ch. 2.3 - Each of the graphs of the functions in Exercises...Ch. 2.3 - Each of the graphs of the functions in Exercises...Ch. 2.3 - Each of the graphs of the functions in Exercises...Ch. 2.3 - Each of the graphs of the functions in Exercises...Ch. 2.3 - Each of the graphs of the functions in Exercises...Ch. 2.3 - Each of the graphs of the functions in Exercises...Ch. 2.3 - Prob. 14ECh. 2.3 - Prob. 15ECh. 2.3 - Each of the graphs of the functions in Exercises...Ch. 2.3 - Each of the graphs of the functions in Exercises...Ch. 2.3 - Each of the graphs of the functions in Exercises...Ch. 2.3 - Each of the graphs of the functions in Exercises...Ch. 2.3 - Each of the graphs of the functions in Exercises...Ch. 2.3 - Each of the graphs of the functions in Exercises...Ch. 2.3 - Each of the graphs of the functions in Exercises...Ch. 2.3 - Each of the graphs of the functions in Exercises...Ch. 2.3 - Prob. 24ECh. 2.3 - Sketch the following curves, indicating all...Ch. 2.3 - Sketch the following curves, indicating all...Ch. 2.3 - Sketch the following curves, indicating all...Ch. 2.3 - Sketch the following curves, indicating all...Ch. 2.3 - Sketch the following curves, indicating all...Ch. 2.3 - Sketch the following curves, indicating all...Ch. 2.3 - Prob. 31ECh. 2.3 - Prob. 32ECh. 2.3 - Prob. 33ECh. 2.3 - Let a,b,c,d be fixed numbers with a0, and let...Ch. 2.3 - The graph of each function in Exercises 35 40 has...Ch. 2.3 - Prob. 36ECh. 2.3 - The graph of each function in Exercises 35 40 has...Ch. 2.3 - The graph of each function in Exercises 35 40 has...Ch. 2.3 - The graph of each function in Exercises 35 40 has...Ch. 2.3 - The graph of each function in Exercises 35 40 has...Ch. 2.3 - In Exercises 41 and 42, determine which function...Ch. 2.3 - In Exercises 41 and 42, determine which function...Ch. 2.3 - Consider the graph of g(x) in Fig. 17. a. If g(x)...Ch. 2.3 - U. S. Population The population (in millions) of...Ch. 2.3 - Index-Fund Fees When a mutual fund company charges...Ch. 2.3 - Prob. 46ECh. 2.3 - Technology Exercises Draw the graph of...Ch. 2.3 - Technology Exercises Draw the graph of...Ch. 2.3 - Technology Exercises Draw the graph of...Ch. 2.3 - Technology Exercises Draw the graph of...Ch. 2.4 - Determine whether each of the following functions...Ch. 2.4 - Prob. 2CYUCh. 2.4 - Prob. 3CYUCh. 2.4 - Find the x intercepts of the given function....Ch. 2.4 - Prob. 2ECh. 2.4 - Find the x intercepts of the given function....Ch. 2.4 - Prob. 4ECh. 2.4 - Find the x intercepts of the given function....Ch. 2.4 - Find the x intercepts of the given function....Ch. 2.4 - Show that the function f(x)=13x32x2+5x has no...Ch. 2.4 - Prob. 8ECh. 2.4 - Sketch the graphs of the following functions....Ch. 2.4 - Sketch the graphs of the following functions....Ch. 2.4 - Sketch the graphs of the following functions....Ch. 2.4 - Sketch the graphs of the following functions....Ch. 2.4 - Sketch the graphs of the following functions....Ch. 2.4 - Prob. 14ECh. 2.4 - Sketch the graphs of the following functions....Ch. 2.4 - Prob. 16ECh. 2.4 - Sketch the graphs of the following functions....Ch. 2.4 - Prob. 18ECh. 2.4 - Sketch the graphs of the following functions....Ch. 2.4 - Sketch the graphs of the following functions....Ch. 2.4 - Prob. 21ECh. 2.4 - Prob. 22ECh. 2.4 - Sketch the graphs of the following functions for...Ch. 2.4 - Prob. 24ECh. 2.4 - Sketch the graphs of the following functions for...Ch. 2.4 - Prob. 26ECh. 2.4 - Sketch the graphs of the following functions for...Ch. 2.4 - Prob. 28ECh. 2.4 - Prob. 29ECh. 2.4 - Prob. 30ECh. 2.4 - Prob. 31ECh. 2.4 - Prob. 32ECh. 2.4 - Find the quadratic function f(x)=ax2+bx+c that...Ch. 2.4 - Prob. 34ECh. 2.4 - Prob. 35ECh. 2.4 - Prob. 36ECh. 2.4 - Prob. 37ECh. 2.4 - Technology Exercises Height of Tropical Grass The...Ch. 2.5 - Volume A canvas wind shelter for the beach has a...Ch. 2.5 - Prob. 2CYUCh. 2.5 - For what x does the function g(x)=10+40xx2 have...Ch. 2.5 - Find the maximum value of the function f(x)=12xx2,...Ch. 2.5 - Find the minimum value of f(t)=t36t2+40, t0 and...Ch. 2.5 - For what t does the function f(t)=t2-24t have its...Ch. 2.5 - Optimization with Constraint Find the maximum of...Ch. 2.5 - Optimization with Constraint Find two positive...Ch. 2.5 - Optimization with Constraint Find the minimum of...Ch. 2.5 - In Exercise 7, can there be a maximum for Q=x2+y2...Ch. 2.5 - Minimizing a Sum Find the positive values of x and...Ch. 2.5 - Maximizing a Product Find the positive values of...Ch. 2.5 - Area There are 320 available to fence in a...Ch. 2.5 - Volume Figure 12 (b) shows an open rectangular box...Ch. 2.5 - Volume Postal requirements specify that parcels...Ch. 2.5 - Perimeter Consider the problem of finding the...Ch. 2.5 - Cost A rectangular garden of area 75 square feet...Ch. 2.5 - Cost A closed rectangular box with a square base...Ch. 2.5 - Surface Area Find the dimensions of the closed...Ch. 2.5 - Volume A canvas wind shelter for the beach has a...Ch. 2.5 - Area A farmer has 1500 available to build an...Ch. 2.5 - Area Find the dimensions of the rectangular garden...Ch. 2.5 - Maximizing a Product Find two positive numbers,...Ch. 2.5 - Minimizing a Sum Find two positive numbers, xandy,...Ch. 2.5 - Area Figure 140 (a) shows a Norman window, which...Ch. 2.5 - Surface Area A large soup can is to be designed so...Ch. 2.5 - In Example 3 we can solve the constraint equation...Ch. 2.5 - Cost A ship uses 5x2 dollars of fuel per hour when...Ch. 2.5 - Cost A cable is to be installed from one corner,...Ch. 2.5 - Area A rectangular page is to contain 50 square...Ch. 2.5 - Distance Find the point on the graph of y=x that...Ch. 2.5 - Prob. 30ECh. 2.5 - Distance Find the point on the line y=2x+5 that is...Ch. 2.5 - Technology Exercise Inscribed Rectangle of Maximum...Ch. 2.6 - In the inventory problem of Example 2, suppose...Ch. 2.6 - In the inventory problem Example 2, Suppose that...Ch. 2.6 - Inventory Problem Figure 6 shows the inventory...Ch. 2.6 - Refer to Fig. 6. Suppose that The ordering cost...Ch. 2.6 - Inventory Control A pharmacist wants to establish...Ch. 2.6 - Inventory Control A furniture store expects to...Ch. 2.6 - Inventory Control A California distributor of...Ch. 2.6 - Economic Lot Size The Great American Tire Co....Ch. 2.6 - Prob. 7ECh. 2.6 - Prob. 8ECh. 2.6 - Prob. 9ECh. 2.6 - Prob. 10ECh. 2.6 - Area Starting with a 100-foot-long stone wall, a...Ch. 2.6 - Prob. 12ECh. 2.6 - Length A rectangular corral of 54 square meters is...Ch. 2.6 - Refer to Exercise 13. If the cost of the fencing...Ch. 2.6 - Revenue Shakespeares Pizza sells 1000 large vegi...Ch. 2.6 - Prob. 16ECh. 2.6 - Cost A storage shed is to be built in the shape of...Ch. 2.6 - Cost A supermarket is to be designed as a...Ch. 2.6 - Volume A certain airline requires that rectangular...Ch. 2.6 - Area An athletic field [Fig.8] consists of a...Ch. 2.6 - Volume An open rectangular box is to be...Ch. 2.6 - Volume A closed rectangular box is to be...Ch. 2.6 - Amount of Oxygen in a Lake Let f(t) be the amount...Ch. 2.6 - Prob. 24ECh. 2.6 - Area Consider a parabolic arch whose shape may be...Ch. 2.6 - Prob. 26ECh. 2.6 - Surface Area An open rectangular box of volume 400...Ch. 2.6 - If f(x) is defined on the interval 0x5 and f(x) is...Ch. 2.6 - Technology Exercises Volume A pizza box is formed...Ch. 2.6 - Technology Exercises Consumption of Coffee in the...Ch. 2.7 - Prob. 1CYUCh. 2.7 - Rework Example 4 under the condition that the...Ch. 2.7 - On a certain route, a regional airline carries...Ch. 2.7 - Minimizing Marginal Cost Given the cost function...Ch. 2.7 - Minimizing Marginal Cost If a total cost function...Ch. 2.7 - Maximizing Revenue Cost The revenue function for a...Ch. 2.7 - Maximizing Revenue The revenue function for a...Ch. 2.7 - Cost and Profit A one-product firm estimates that...Ch. 2.7 - Maximizing Profit A small tie shop sells ties for...Ch. 2.7 - Demand and Revenue The demand equation for a...Ch. 2.7 - Maximizing Revenue The demand equation for a...Ch. 2.7 - Profit Some years ago, it was estimated that the...Ch. 2.7 - Maximizing Area Consider a rectangle in the xy-...Ch. 2.7 - Demand, Revenue, and Profit Until recently...Ch. 2.7 - Demand and Revenue The average ticket price for a...Ch. 2.7 - Demand and Revenue An artist is planning to sell...Ch. 2.7 - Demand and Revenue A swimming club offers...Ch. 2.7 - Prob. 15ECh. 2.7 - Prob. 16ECh. 2.7 - Price Setting The monthly demand equation for an...Ch. 2.7 - Taxes, Profit, and Revenue The demand equation for...Ch. 2.7 - Interest Rate A savings and loan association...Ch. 2.7 - Prob. 20ECh. 2.7 - Revenue The revenue for a manufacturer is R(x)...Ch. 2.7 - Prob. 22ECh. 2 - State as many terms used to describe graphs of...Ch. 2 - What is the difference between having a relative...Ch. 2 - Give three characterizations of what it means for...Ch. 2 - What does it mean to say that the graph of f(x)...Ch. 2 - Prob. 5CCECh. 2 - Prob. 6CCECh. 2 - Prob. 7CCECh. 2 - Prob. 8CCECh. 2 - Prob. 9CCECh. 2 - Prob. 10CCECh. 2 - Prob. 11CCECh. 2 - Prob. 12CCECh. 2 - Prob. 13CCECh. 2 - Prob. 14CCECh. 2 - Outline the procedure for solving an optimization...Ch. 2 - Prob. 16CCECh. 2 - Figure (1) contains the graph of f(x), the...Ch. 2 - Figure (2) shows the graph of function f(x) and...Ch. 2 - In Exercise 36, draw the graph of a function f(x)...Ch. 2 - In Exercise 36, draw the graph of a function f(x)...Ch. 2 - In Exercise 36, draw the graph of a function f(x)...Ch. 2 - In Exercise 36, draw the graph of a function f(x)...Ch. 2 - Exercise 712, refer to the graph in Fig. 3. List...Ch. 2 - Exercise 712, refer to the graph in Fig. 3. List...Ch. 2 - Exercise 712, refer to the graph in Fig. 3. List...Ch. 2 - Exercise 712, refer to the graph in Fig. 3. List...Ch. 2 - Exercise 712, refer to the graph in Fig. 3. List...Ch. 2 - Exercise 712, refer to the graph in Fig. 3. List...Ch. 2 - Properties of various functions are described...Ch. 2 - Properties of various functions are described...Ch. 2 - Properties of various functions are described...Ch. 2 - Properties of various functions are described...Ch. 2 - Properties of various functions are described...Ch. 2 - Properties of various functions are described...Ch. 2 - Properties of various functions are described...Ch. 2 - Prob. 20RECh. 2 - In Fig. 4 (a) and 4 (b), the t axis represents...Ch. 2 - U.S. Electric Energy United States electrical...Ch. 2 - Sketch the following parabolas. Include there x...Ch. 2 - Sketch the following parabolas. Include there x...Ch. 2 - Sketch the following parabolas. Include there x...Ch. 2 - Sketch the following parabolas. Include there x...Ch. 2 - Sketch the following parabolas. Include there x...Ch. 2 - Sketch the following parabolas. Include there x...Ch. 2 - Sketch the following parabolas. Include there x...Ch. 2 - Sketch the following parabolas. Include there x...Ch. 2 - Sketch the following parabolas. Include there x...Ch. 2 - Sketch the following parabolas. Include there x...Ch. 2 - Sketch the following curves. y=2x3+3x2+1Ch. 2 - Sketch the following curves. y=x332x26xCh. 2 - Sketch the following curves. y=x33x2+3x2Ch. 2 - Sketch the following curves. y=100+36x6x2x3Ch. 2 - Sketch the following curves. y=113+3xx213x3Ch. 2 - Sketch the following curves. y=x33x29x+7Ch. 2 - Sketch the following curves. y=13x32x25xCh. 2 - Sketch the following curves. y=x36x215x+50Ch. 2 - Sketch the following curves. y=x42x2Ch. 2 - Sketch the following curves. y=x44x3Ch. 2 - Sketch the following curves. y=x5+20x+3(x0)Ch. 2 - Sketch the following curves. y=12x+2x+1(x0)Ch. 2 - Let f(x)=(x2+2)3/2. Show that the graph of f(x)...Ch. 2 - Show that the function f(x)=(2x2+3)3/2 is...Ch. 2 - Let f(x) be a function whose derivative is...Ch. 2 - Let f(x) be a function whose derivative is...Ch. 2 - Position Velocity and Acceleration A car traveling...Ch. 2 - The water level in a reservoir varies during the...Ch. 2 - Population near New York City Let f(x) be the...Ch. 2 - For what x does the function f(x)=14x2x+2,0x8,...Ch. 2 - Find the maximum value of the function...Ch. 2 - Find the minimum value of the function...Ch. 2 - Surface Area An open rectangular box is to be 4...Ch. 2 - Volume A closed rectangular box with a square base...Ch. 2 - Volume A long rectangular sheet of metal 30 inches...Ch. 2 - Maximizing the Total Yield A small orchard yields...Ch. 2 - Inventory Control A publishing company sells...Ch. 2 - Profit if the demand equation for a monopolist is...Ch. 2 - Minimizing time Jane wants to drive her tractor...Ch. 2 - Maximizing Revenue A travel agency offers a boat...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- write it down for better understanding pleasearrow_forward1. Suppose F(t) gives the temperature in degrees Fahrenheit t minutes after 1pm. With a complete sentence, interpret the equation F(10) 68. (Remember this means explaining the meaning of the equation without using any mathy vocabulary!) Include units. (3 points) =arrow_forward2. Suppose f(x) = 3x² - 5x. Show all your work for the problems below. a. Evaluate f(-3). If you have multiple steps, be sure to connect your expressions with EQUALS SIGNS. (3 points)arrow_forward
- 4c Consider the function f(x) = 10x + 4x5 - 4x³- 1. Enter the general antiderivative of f(x)arrow_forwardA tank contains 60 kg of salt and 2000 L of water. Pure water enters a tank at the rate 8 L/min. The solution is mixed and drains from the tank at the rate 11 L/min. Let y be the number of kg of salt in the tank after t minutes. The differential equation for this situation would be: dy dt y(0) =arrow_forwardSolve the initial value problem: y= 0.05y + 5 y(0) = 100 y(t) =arrow_forward
- y=f'(x) 1 8 The function f is defined on the closed interval [0,8]. The graph of its derivative f' is shown above. How many relative minima are there for f(x)? O 2 6 4 00arrow_forward60! 5!.7!.15!.33!arrow_forward• • Let > be a potential for the vector field F = (−2 y³, −6 xy² − 4 z³, −12 yz² + 4 2). Then the value of sin((-1.63, 2.06, 0.57) – (0,0,0)) is - 0.336 -0.931 -0.587 0.440 0.902 0.607 -0.609 0.146arrow_forward
- The value of cos(4M) where M is the magnitude of the vector field with potential ƒ = e² sin(лy) cos(π²) at x = 1, y = 1/4, z = 1/3 is 0.602 -0.323 0.712 -0.816 0.781 0.102 0.075 0.013arrow_forwardThere is exactly number a and one number b such that the vector field F = conservative. For those values of a and b, the value of cos(a) + sin(b) is (3ay + z, 3ayz + 3x, −by² + x) is -0.961 -0.772 -1.645 0.057 -0.961 1.764 -0.457 0.201arrow_forwardA: Tan Latitude / Tan P A = Tan 04° 30'/ Tan 77° 50.3' A= 0.016960 803 S CA named opposite to latitude, except when hour angle between 090° and 270°) B: Tan Declination | Sin P B Tan 052° 42.1'/ Sin 77° 50.3' B = 1.34 2905601 SCB is alway named same as declination) C = A + B = 1.35 9866404 S CC correction, A+/- B: if A and B have same name - add, If different name- subtract) = Tan Azimuth 1/Ccx cos Latitude) Tan Azimuth = 0.737640253 Azimuth = S 36.4° E CAzimuth takes combined name of C correction and Hour Angle - If LHA is between 0° and 180°, it is named "west", if LHA is between 180° and 360° it is named "east" True Azimuth= 143.6° Compass Azimuth = 145.0° Compass Error = 1.4° West Variation 4.0 East Deviation: 5.4 Westarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal LittellHolt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGAL
- Elementary Geometry For College Students, 7eGeometryISBN:9781337614085Author:Alexander, Daniel C.; Koeberlein, Geralyn M.Publisher:Cengage,Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw Hill
Algebra: Structure And Method, Book 1
Algebra
ISBN:9780395977224
Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:McDougal Littell
Holt Mcdougal Larson Pre-algebra: Student Edition...
Algebra
ISBN:9780547587776
Author:HOLT MCDOUGAL
Publisher:HOLT MCDOUGAL
Elementary Geometry For College Students, 7e
Geometry
ISBN:9781337614085
Author:Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:Cengage,
Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill
The surface area and volume of cone, cylinder, prism and pyramid; Author: AtHome Tuition;https://www.youtube.com/watch?v=SlaQmaJCOt8;License: Standard YouTube License, CC-BY