To prove: The price per ticket of a football game so as to maximize profit by Edwards University and the number of person who will attend at that price where at the price $ 18 per ticket, attendance average 40 , 000 people per game and for every decrease of the $ 3 adds 10 , 000 people to the average attendance and $ 4.50 are spent by every person on the concessions.
To prove: The price per ticket of a football game so as to maximize profit by Edwards University and the number of person who will attend at that price where at the price $ 18 per ticket, attendance average 40 , 000 people per game and for every decrease of the $ 3 adds 10 , 000 people to the average attendance and $ 4.50 are spent by every person on the concessions.
Solution Summary: The author explains how the price per ticket of a football game maximizes profit by Edwards University and the number of people who attend at that price.
To prove: The price per ticket of a football game so as to maximize profit by Edwards University and the number of person who will attend at that price where at the price $18 per ticket, attendance average 40,000 people per game and for every decrease of the $3 adds 10,000 people to the average attendance and $4.50 are spent by every person on the concessions.
Question 1 (1pt). The graph below shows the velocity (in m/s) of an electric
autonomous vehicle moving along a straight track. At t = 0 the vehicle is at the
charging station.
1
8
10 12
0
2
4
6
(a) How far is the vehicle from the charging station when t = 2, 4, 6, 8, 10, 12?
(b) At what times is the vehicle farthest from the charging station?
(c) What is the total distance traveled by the vehicle?
Question 2 (1pt). Evaluate the following (definite and indefinite) integrals
(a) / (e² + ½) dx
(b) S
(3u 2)(u+1)du
(c) [ cos³ (9) sin(9)do
.3
(d) L³ (₂
+
1
dz
=
Question 4 (5pt): The Orchard Problem. Below is the graph y
f(t) of
the annual harvest (assumed continuous) in kg/year from my cranapple orchard t
years after planting. The trees take about 25 years to get established, and from
that point on, for the next 25 years, they give a fairly good yield. But after 50
years, age and disease are taking their toll, and the annual yield is falling off.
40
35
30
。 ៣៩ ថា8 8 8 8 6
25
20
15
10
y
5
0
0 5 10 15 20 25 30 35 40 45 50 55 60
The orchard problem is this: when should the orchard be cut down and re-
planted, thus starting the cycle again? What you want to do is to maximize your
average harvest per year over a full cycle. Of course there are costs to cutting the
orchard down and replanting, but it turns out that we can ignore these. The first
cost is the time it takes to cut the trees down and replant but we assume that this
can effectively be done in a week, and the loss of time is negligible. Secondly there
is the cost of the labour to cut…
Chapter 2 Solutions
Calculus and Its Applications Plus MyLab Math with Pearson eText -- Access Card Package (11th Edition) (Bittinger, Ellenbogen & Surgent, The Calculus and Its Applications Series)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Solve ANY Optimization Problem in 5 Steps w/ Examples. What are they and How do you solve them?; Author: Ace Tutors;https://www.youtube.com/watch?v=BfOSKc_sncg;License: Standard YouTube License, CC-BY
Types of solution in LPP|Basic|Multiple solution|Unbounded|Infeasible|GTU|Special case of LP problem; Author: Mechanical Engineering Management;https://www.youtube.com/watch?v=F-D2WICq8Sk;License: Standard YouTube License, CC-BY