COLLEGE PHYSICS,VOLUME 1
COLLEGE PHYSICS,VOLUME 1
2nd Edition
ISBN: 9781319115104
Author: Freedman
Publisher: MAC HIGHER
bartleby

Videos

Question
Book Icon
Chapter 25, Problem 85QAP
To determine

(a)

What is the speed of the light signal as measured by the observer (i) at rest in the rocket and (ii) at rest on Earth if a rocket 642 m long is traveling parallel to Earth's surface at 0.5c from left to right, at time t = 0 a light flashes for an instant at the center of the rocket, detectors at opposite ends of the rocket record the arrival of the light signal, call event A the light striking the left detector and event B the light striking the right detector. Observers at rest in the rocket and on Earth record the events?

Expert Solution
Check Mark

Explanation of Solution

Calculation:

A rocket that is 642 m long is traveling parallel to Earth's surface at a speed V = 0.5c from left to right. At t = 0, a light flash for an instant at the center of the rocket. Detectors at opposite ends of the rocket detect when the light arrives-event A is when the light strikes the left side of the rocket, and event B is when the light strikes the right side of the rocket. The events are recorded by observers at rest in the rocket and observers at rest on Earth. Since the speed of light must be constant in all inertial reference frames, the speed of the light measured by both sets of observers must be the same and equal to c. In the observations made on the rocket, the light travels an equal distance to the detectors on the left and right ends of the ship. Events A and B will take place at a time equal to half of the length of the rocket divided by the speed of light. Both length contraction of the rocket and the relative motion of the rocket and the light need to be considered in the measurements made on Earth. The light for event A must travel half of the contracted length of the rocket minus the distance the rocket travels during that time. The light for event B must travel half of the contracted length of the rocket plus the distance the rocket travels during that time. We can also perform this calculation using time dilation-the proper time is the time measured on the rocket and the observed time interval is the time difference between events A and B as measured in Earth's frame.
The speed of light is equal to c in all inertial reference frames, so it is the same for both the observer at rest in the rocket and the observer at rest on Earth.

Conclusion:

The speed of light is equal to c in all inertial reference frames, so it is the same for both the observer at rest in the rocket and the observer at rest on Earth.

To determine

(b)

At what time after the flash do events A and B occur as measured by (r) the observer in the rocket and (it) the observer at rest on Earth? Which event occurs first in each case??

Expert Solution
Check Mark

Explanation of Solution

Calculation:

  1. Observer in the rocket
    tA=tB=xc=3213×108=1.07×106s
  2. <
  3. Observer in the Earth
    Event A:
    ctA=xA=x1 v 2 c 2 VtAtA=x 1 v 2 c 2 c+V=x 1 (0.5c) 2 c 2 c+0.5c=321 1 (0.5c) 2 c 2 c+0.5c=6.178×107s

  Event B:
    ctB=xB=x1 v 2 c 2 +VtBtB=x 1 v 2 c 2 cV=x 1 (0.5c) 2 c 2 c0.5c=321 1 (0.5c) 2 c 2 0.5c=1.853×106s

To determine

(c)

That the results in part (b) are consistent with time dilation?

Expert Solution
Check Mark

Explanation of Solution

Calculation:

  Δt=Δt proper 1 v 2 c 2 1.853×1066.178×107=1.07× 10 6 1 (0.5c) 2 c 2 1.235×106s=1.235×106s

Conclusion:

This is consistent with time dilation.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Fresnel lens: You would like to design a 25 mm diameter blazed Fresnel zone plate with a first-order power of +1.5 diopters. What is the lithography requirement (resolution required) for making this lens that is designed for 550 nm? Express your answer in units of μm to one decimal point. Fresnel lens: What would the power of the first diffracted order of this lens be at wavelength of 400 nm? Express your answer in diopters to one decimal point. Eye: A person with myopic eyes has a far point of 15 cm. What power contact lenses does she need to correct her version to a standard far point at infinity? Give your answer in diopter to one decimal point.
Paraxial design of a field flattener. Imagine your optical system has Petzal curvature of the field with radius p. In Module 1 of Course 1, a homework problem asked you to derive the paraxial focus shift along the axis when a slab of glass was inserted in a converging cone of rays. Find or re-derive that result, then use it to calculate the paraxial radius of curvature of a field flattener of refractive index n that will correct the observed Petzval. Assume that the side of the flattener facing the image plane is plano. What is the required radius of the plano-convex field flattener? (p written as rho )
3.37(a) Five free electrons exist in a three-dimensional infinite potential well with all three widths equal to \( a = 12 \, \text{Å} \). Determine the Fermi energy level at \( T = 0 \, \text{K} \).  (b) Repeat part (a) for 13 electrons.   Book: Semiconductor Physics and Devices 4th ed, NeamanChapter-3Please expert answer only. don't give gpt-generated answers, & please clear the concept of quantum states for determining nx, ny, nz to determine E, as I don't have much idea about that topic.

Chapter 25 Solutions

COLLEGE PHYSICS,VOLUME 1

Ch. 25 - Prob. 11QAPCh. 25 - Prob. 12QAPCh. 25 - Prob. 13QAPCh. 25 - Prob. 14QAPCh. 25 - Prob. 15QAPCh. 25 - Prob. 16QAPCh. 25 - Prob. 17QAPCh. 25 - Prob. 18QAPCh. 25 - Prob. 19QAPCh. 25 - Prob. 20QAPCh. 25 - Prob. 21QAPCh. 25 - Prob. 22QAPCh. 25 - Prob. 23QAPCh. 25 - Prob. 24QAPCh. 25 - Prob. 25QAPCh. 25 - Prob. 26QAPCh. 25 - Prob. 27QAPCh. 25 - Prob. 28QAPCh. 25 - Prob. 29QAPCh. 25 - Prob. 30QAPCh. 25 - Prob. 31QAPCh. 25 - Prob. 32QAPCh. 25 - Prob. 33QAPCh. 25 - Prob. 34QAPCh. 25 - Prob. 35QAPCh. 25 - Prob. 36QAPCh. 25 - Prob. 37QAPCh. 25 - Prob. 38QAPCh. 25 - Prob. 39QAPCh. 25 - Prob. 40QAPCh. 25 - Prob. 41QAPCh. 25 - Prob. 42QAPCh. 25 - Prob. 43QAPCh. 25 - Prob. 44QAPCh. 25 - Prob. 45QAPCh. 25 - Prob. 46QAPCh. 25 - Prob. 47QAPCh. 25 - Prob. 48QAPCh. 25 - Prob. 49QAPCh. 25 - Prob. 50QAPCh. 25 - Prob. 51QAPCh. 25 - Prob. 52QAPCh. 25 - Prob. 53QAPCh. 25 - Prob. 54QAPCh. 25 - Prob. 55QAPCh. 25 - Prob. 56QAPCh. 25 - Prob. 57QAPCh. 25 - Prob. 58QAPCh. 25 - Prob. 59QAPCh. 25 - Prob. 60QAPCh. 25 - Prob. 61QAPCh. 25 - Prob. 62QAPCh. 25 - Prob. 63QAPCh. 25 - Prob. 64QAPCh. 25 - Prob. 65QAPCh. 25 - Prob. 66QAPCh. 25 - Prob. 67QAPCh. 25 - Prob. 68QAPCh. 25 - Prob. 69QAPCh. 25 - Prob. 70QAPCh. 25 - Prob. 71QAPCh. 25 - Prob. 72QAPCh. 25 - Prob. 73QAPCh. 25 - Prob. 74QAPCh. 25 - Prob. 75QAPCh. 25 - Prob. 76QAPCh. 25 - Prob. 77QAPCh. 25 - Prob. 78QAPCh. 25 - Prob. 79QAPCh. 25 - Prob. 80QAPCh. 25 - Prob. 81QAPCh. 25 - Prob. 82QAPCh. 25 - Prob. 83QAPCh. 25 - Prob. 84QAPCh. 25 - Prob. 85QAPCh. 25 - Prob. 86QAPCh. 25 - Prob. 87QAPCh. 25 - Prob. 88QAPCh. 25 - Prob. 89QAPCh. 25 - Prob. 90QAP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Time Dilation - Einstein's Theory Of Relativity Explained!; Author: Science ABC;https://www.youtube.com/watch?v=yuD34tEpRFw;License: Standard YouTube License, CC-BY