COLLEGE PHYSICS,VOLUME 1
COLLEGE PHYSICS,VOLUME 1
2nd Edition
ISBN: 9781319115104
Author: Freedman
Publisher: MAC HIGHER
bartleby

Concept explainers

Question
Book Icon
Chapter 25, Problem 57QAP
To determine

(a)

Travel time of each photon

Expert Solution
Check Mark

Answer to Problem 57QAP

Travel time of each photon is 107sec.

Explanation of Solution

Given:

Length of the ship, 60m

Speed of the spacecraft, v=0.6c

Formula used:

The relation between time, distance and speed is given as

  v=dt

Calculation:

Since the Gaar is standing in the middle of the ship, therefore distance cover by each photon is 30m. We know that photon moves with the speed of light, therefore time required by each photon to strike is calculated as

  t=dv=303× 108=1×107sec

Conclusion:

Travel time of each photon is 107sec.

To determine

(b)

According to you which photon will register first

Expert Solution
Check Mark

Answer to Problem 57QAP

Backward photon will register first strike.

Explanation of Solution

Given:

Length of the ship,

  60m

Speed of the spacecraft, v=0.6c

Calculation:

Since we are in stationary reference frame, therefore the photon that is fired in the backward direction will have the relative velocity of 1v2c2 while the forward electron will have the relative velocity of 0.4c, therefore in our reference backward electron will strike first.

Conclusion:

Backward photon will register first strike.

To determine

(c)

Difference in the striking times of the photons

Expert Solution
Check Mark

Answer to Problem 57QAP

Difference in the striking times of the photons is

  1.5×107sec.

Explanation of Solution

Given:

Length of the ship, 60m

Speed of the spacecraft, v=0.6c

Formula used:

The time coordinate is calculated as

  t=11( v2 c2 )(t'vx'c2)

Here,

  vis the velocity of the rocket

  cis the velocity of light

Calculation:

Let the backward photon will strike first in the person reference frame. Now in the pilot reference plane the left bulb turns on at x'=0andt'=0

The time coordinate is calculated as

  t=11( v2 c2 )(t'vx'c2)

Plugging the values in the above equation

  t=1 1( 0.60c2 c2 )(0 0.60c×0 c2 )=0

The time coordinate for the forward photon is

  t=11( v2 c2 )(t'vx'c2)

Plugging the values in the above equation

  t=1 1( 0.60c2 c2 )(0 0.60c×60 c2 )=1 1( 0.602 1 )(0 0.60×60 3× 108 )=1.5×107sec

Conclusion:

Difference in the striking times of the photons is

  1.5×107sec.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
••63 SSM www In the circuit of Fig. 27-65, 8 = 1.2 kV, C = 6.5 µF, R₁ S R₂ R3 800 C H R₁ = R₂ = R3 = 0.73 MQ. With C completely uncharged, switch S is suddenly closed (at t = 0). At t = 0, what are (a) current i̟ in resistor 1, (b) current 2 in resistor 2, and (c) current i3 in resistor 3? At t = ∞o (that is, after many time constants), what are (d) i₁, (e) i₂, and (f) iz? What is the potential difference V2 across resistor 2 at (g) t = 0 and (h) t = ∞o? (i) Sketch V2 versus t between these two extreme times. Figure 27-65 Problem 63.
Thor flies by spinning his hammer really fast from a leather strap at the end of the handle, letting go, then grabbing it and having it pull him. If Thor wants to reach escape velocity (velocity needed to leave Earth’s atmosphere), he will need the linear velocity of the center of mass of the hammer to be 11,200 m/s. Thor's escape velocity is 33532.9 rad/s, the angular velocity is 8055.5 rad/s^2. While the hammer is spinning at its maximum speed what impossibly large tension does the leather strap, which the hammer is spinning by, exert when the hammer is at its lowest point? the hammer has a total mass of 20.0kg.
If the room’s radius is 16.2 m, at what minimum linear speed does Quicksilver need to run to stay on the walls without sliding down?  Assume the coefficient of friction between Quicksilver and the wall is 0.236.

Chapter 25 Solutions

COLLEGE PHYSICS,VOLUME 1

Ch. 25 - Prob. 11QAPCh. 25 - Prob. 12QAPCh. 25 - Prob. 13QAPCh. 25 - Prob. 14QAPCh. 25 - Prob. 15QAPCh. 25 - Prob. 16QAPCh. 25 - Prob. 17QAPCh. 25 - Prob. 18QAPCh. 25 - Prob. 19QAPCh. 25 - Prob. 20QAPCh. 25 - Prob. 21QAPCh. 25 - Prob. 22QAPCh. 25 - Prob. 23QAPCh. 25 - Prob. 24QAPCh. 25 - Prob. 25QAPCh. 25 - Prob. 26QAPCh. 25 - Prob. 27QAPCh. 25 - Prob. 28QAPCh. 25 - Prob. 29QAPCh. 25 - Prob. 30QAPCh. 25 - Prob. 31QAPCh. 25 - Prob. 32QAPCh. 25 - Prob. 33QAPCh. 25 - Prob. 34QAPCh. 25 - Prob. 35QAPCh. 25 - Prob. 36QAPCh. 25 - Prob. 37QAPCh. 25 - Prob. 38QAPCh. 25 - Prob. 39QAPCh. 25 - Prob. 40QAPCh. 25 - Prob. 41QAPCh. 25 - Prob. 42QAPCh. 25 - Prob. 43QAPCh. 25 - Prob. 44QAPCh. 25 - Prob. 45QAPCh. 25 - Prob. 46QAPCh. 25 - Prob. 47QAPCh. 25 - Prob. 48QAPCh. 25 - Prob. 49QAPCh. 25 - Prob. 50QAPCh. 25 - Prob. 51QAPCh. 25 - Prob. 52QAPCh. 25 - Prob. 53QAPCh. 25 - Prob. 54QAPCh. 25 - Prob. 55QAPCh. 25 - Prob. 56QAPCh. 25 - Prob. 57QAPCh. 25 - Prob. 58QAPCh. 25 - Prob. 59QAPCh. 25 - Prob. 60QAPCh. 25 - Prob. 61QAPCh. 25 - Prob. 62QAPCh. 25 - Prob. 63QAPCh. 25 - Prob. 64QAPCh. 25 - Prob. 65QAPCh. 25 - Prob. 66QAPCh. 25 - Prob. 67QAPCh. 25 - Prob. 68QAPCh. 25 - Prob. 69QAPCh. 25 - Prob. 70QAPCh. 25 - Prob. 71QAPCh. 25 - Prob. 72QAPCh. 25 - Prob. 73QAPCh. 25 - Prob. 74QAPCh. 25 - Prob. 75QAPCh. 25 - Prob. 76QAPCh. 25 - Prob. 77QAPCh. 25 - Prob. 78QAPCh. 25 - Prob. 79QAPCh. 25 - Prob. 80QAPCh. 25 - Prob. 81QAPCh. 25 - Prob. 82QAPCh. 25 - Prob. 83QAPCh. 25 - Prob. 84QAPCh. 25 - Prob. 85QAPCh. 25 - Prob. 86QAPCh. 25 - Prob. 87QAPCh. 25 - Prob. 88QAPCh. 25 - Prob. 89QAPCh. 25 - Prob. 90QAP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    College Physics
    Physics
    ISBN:9781305952300
    Author:Raymond A. Serway, Chris Vuille
    Publisher:Cengage Learning
    Text book image
    College Physics
    Physics
    ISBN:9781938168000
    Author:Paul Peter Urone, Roger Hinrichs
    Publisher:OpenStax College
    Text book image
    University Physics Volume 3
    Physics
    ISBN:9781938168185
    Author:William Moebs, Jeff Sanny
    Publisher:OpenStax
  • Text book image
    College Physics
    Physics
    ISBN:9781285737027
    Author:Raymond A. Serway, Chris Vuille
    Publisher:Cengage Learning
    Text book image
    Modern Physics
    Physics
    ISBN:9781111794378
    Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
    Publisher:Cengage Learning
    Text book image
    Principles of Physics: A Calculus-Based Text
    Physics
    ISBN:9781133104261
    Author:Raymond A. Serway, John W. Jewett
    Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning