Concept explainers
(a)
The proof for
(a)
Answer to Problem 71CP
The electric potential at the point
Explanation of Solution
The following figure shows the diagram of the dipoles and the point
Figure-(1)
The dipole moment’s magnitude is given as.
Here,
Write the equation for the electric potential at the point
Here,
Write the equation for the distance between the positive charge and the point
Write the equation for the distance between the negative charge and the point
Rearrange the equation (II) and (III) to calculate
Expand the above equation binomially and neglect the higher terms to calculate
Substitute
Substitute
Therefore, the electric potential at the point
(b)
The electric field’s radial component
(b)
Answer to Problem 71CP
The electric field’s radial component is
Explanation of Solution
Write the equation for the radial component of the electric field.
Here,
Write the equation for the perpendicular component of the electric field.
Here,
Conclusion:
Substitute
Substitute
Therefore, the electric field’s radial component is
(c)
Whether the results for
(c)
Answer to Problem 71CP
Yes, the results for
Explanation of Solution
Write the equation for
Write the equation for
Conclusion:
Substitute
Substitute
Substitute
Substitute
Therefore, the results for
(d)
Whether the results for
(d)
Answer to Problem 71CP
No, the results for
Explanation of Solution
Write the equation for
Write the equation for
Conclusion:
Substitute
Substitute
Therefore, the results for
(e)
The expression for the electric potential in terms of the Cartesian coordinates.
(e)
Answer to Problem 71CP
The expression for the electric potential in terms of the Cartesian coordinates is
Explanation of Solution
Write the equation for the electric potential.
Conclusion:
Substitute
Therefore, the expression for the electric potential in terms of the Cartesian coordinates is
(f)
The
(f)
Answer to Problem 71CP
The
Explanation of Solution
Write the equation for the
Here,
Write the equation for the
Here,
Conclusion:
Substitute
Substitute
Therefore, the
Want to see more full solutions like this?
Chapter 25 Solutions
Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
- 1.62 On a training flight, a Figure P1.62 student pilot flies from Lincoln, Nebraska, to Clarinda, Iowa, next to St. Joseph, Missouri, and then to Manhattan, Kansas (Fig. P1.62). The directions are shown relative to north: 0° is north, 90° is east, 180° is south, and 270° is west. Use the method of components to find (a) the distance she has to fly from Manhattan to get back to Lincoln, and (b) the direction (relative to north) she must fly to get there. Illustrate your solutions with a vector diagram. IOWA 147 km Lincoln 85° Clarinda 106 km 167° St. Joseph NEBRASKA Manhattan 166 km 235° S KANSAS MISSOURIarrow_forwardPlz no chatgpt pls will upvotearrow_forward3.19 • Win the Prize. In a carnival booth, you can win a stuffed gi- raffe if you toss a quarter into a small dish. The dish is on a shelf above the point where the quarter leaves your hand and is a horizontal dis- tance of 2.1 m from this point (Fig. E3.19). If you toss the coin with a velocity of 6.4 m/s at an angle of 60° above the horizontal, the coin will land in the dish. Ignore air resistance. (a) What is the height of the shelf above the point where the quarter leaves your hand? (b) What is the vertical component of the velocity of the quarter just before it lands in the dish? Figure E3.19 6.4 m/s 2.1arrow_forward
- Can someone help me answer this thank you.arrow_forward1.21 A postal employee drives a delivery truck along the route shown in Fig. E1.21. Determine the magnitude and direction of the resultant displacement by drawing a scale diagram. (See also Exercise 1.28 for a different approach.) Figure E1.21 START 2.6 km 4.0 km 3.1 km STOParrow_forwardhelp because i am so lost and it should look something like the picturearrow_forward
- 3.31 A Ferris wheel with radius Figure E3.31 14.0 m is turning about a horizontal axis through its center (Fig. E3.31). The linear speed of a passenger on the rim is constant and equal to 6.00 m/s. What are the magnitude and direction of the passenger's acceleration as she passes through (a) the lowest point in her circular motion and (b) the high- est point in her circular motion? (c) How much time does it take the Ferris wheel to make one revolution?arrow_forward1.56 ⚫. Three horizontal ropes pull on a large stone stuck in the ground, producing the vector forces A, B, and C shown in Fig. P1.56. Find the magnitude and direction of a fourth force on the stone that will make the vector sum of the four forces zero. Figure P1.56 B(80.0 N) 30.0 A (100.0 N) 53.0° C (40.0 N) 30.0°arrow_forward1.39 Given two vectors A = -2.00 +3.00 +4.00 and B=3.00 +1.00 -3.00k. (a) find the magnitude of each vector; (b) use unit vectors to write an expression for the vector difference A - B; and (c) find the magnitude of the vector difference A - B. Is this the same as the magnitude of B - Ä? Explain.arrow_forward
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College