Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
9th Edition
ISBN: 9781305266292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 25, Problem 46P
To determine
The electric potential at point
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Compute for the potential difference, in volts, in moving a charge from A(3, 0, -7) m to B(8, 8, -3) m against the electric field due to a disk charge of radius 9 m on the plane x = 0. The disk has a total charge of 7 nC.
For problem 11 of the text, calculate thepotential in miypoV (Mu volts ) at a point r = 0.716 R from thecenter of the sphere. Answer in 5 sig. figs!!
Compute for the potential difference, in volts, in moving a charge from A(0, 0, 2) m to B(0, 0, 8) m against the electric field due to a ring charge of radius 6 m on the plane z = 0 centered at the origin. The ring has a total charge of 9 nC.
Chapter 25 Solutions
Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
Ch. 25.1 - two points and are located within a region in...Ch. 25.2 - QUICK QUIZ 24.2 The labeled points in Figure 24.4...Ch. 25.3 - In Figure 24.8b, take q2, to be a negative source...Ch. 25.4 - In a certain region of space, the electric...Ch. 25 - Prob. 1OQCh. 25 - Prob. 2OQCh. 25 - Prob. 3OQCh. 25 - Prob. 4OQCh. 25 - Prob. 5OQCh. 25 - Prob. 6OQ
Ch. 25 - Prob. 7OQCh. 25 - Prob. 8OQCh. 25 - Prob. 9OQCh. 25 - Prob. 10OQCh. 25 - Prob. 11OQCh. 25 - Prob. 12OQCh. 25 - Prob. 13OQCh. 25 - Prob. 14OQCh. 25 - Prob. 15OQCh. 25 - Prob. 1CQCh. 25 - Prob. 2CQCh. 25 - When charged particles are separated by an...Ch. 25 - Prob. 4CQCh. 25 - Prob. 5CQCh. 25 - Prob. 6CQCh. 25 - Oppositely charged parallel plates are separated...Ch. 25 - Prob. 2PCh. 25 - Prob. 3PCh. 25 - How much work is done (by a battery, generator, or...Ch. 25 - Prob. 5PCh. 25 - Starting with the definition of work, prove that...Ch. 25 - Prob. 7PCh. 25 - (a) Find the electric potential difference Ve...Ch. 25 - Prob. 9PCh. 25 - Prob. 10PCh. 25 - Prob. 11PCh. 25 - Prob. 12PCh. 25 - Prob. 13PCh. 25 - Prob. 14PCh. 25 - Prob. 15PCh. 25 - Two point charges Q1 = +5.00 nC and Q2 = 3.00 nC...Ch. 25 - Prob. 17PCh. 25 - Prob. 18PCh. 25 - Given two particles with 2.00-C charges as shown...Ch. 25 - Prob. 20PCh. 25 - Four point charges each having charge Q are...Ch. 25 - Prob. 22PCh. 25 - Prob. 23PCh. 25 - Show that the amount of work required to assemble...Ch. 25 - Prob. 25PCh. 25 - Prob. 26PCh. 25 - Prob. 27PCh. 25 - Prob. 28PCh. 25 - Prob. 29PCh. 25 - Prob. 30PCh. 25 - Prob. 31PCh. 25 - Prob. 32PCh. 25 - How much work is required to assemble eight...Ch. 25 - Four identical particles, each having charge q and...Ch. 25 - Prob. 35PCh. 25 - Prob. 36PCh. 25 - Prob. 37PCh. 25 - Prob. 38PCh. 25 - Prob. 39PCh. 25 - Prob. 40PCh. 25 - Prob. 41PCh. 25 - Prob. 42PCh. 25 - Prob. 43PCh. 25 - Prob. 44PCh. 25 - Prob. 45PCh. 25 - Prob. 46PCh. 25 - Prob. 47PCh. 25 - The electric field magnitude on the surface of an...Ch. 25 - Prob. 49PCh. 25 - Prob. 50PCh. 25 - Prob. 51PCh. 25 - Prob. 52PCh. 25 - Prob. 53APCh. 25 - Prob. 54APCh. 25 - Prob. 55APCh. 25 - Prob. 56APCh. 25 - Prob. 57APCh. 25 - Prob. 58APCh. 25 - Prob. 59APCh. 25 - Prob. 60APCh. 25 - Prob. 61APCh. 25 - Prob. 62APCh. 25 - Prob. 63APCh. 25 - Prob. 64APCh. 25 - Prob. 65APCh. 25 - Prob. 66APCh. 25 - Prob. 67APCh. 25 - Prob. 68APCh. 25 - Review. Two parallel plates having charges of...Ch. 25 - When an uncharged conducting sphere of radius a is...Ch. 25 - Prob. 71CPCh. 25 - Prob. 72CPCh. 25 - Prob. 73CPCh. 25 - Prob. 74CPCh. 25 - Prob. 75CPCh. 25 - Prob. 76CPCh. 25 - Prob. 77CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- For the arrangement described in Problem 25, calculate the electric potential at point B, which lies on the perpendicular bisector of the rod a distance b above the x axis.arrow_forwardA filament running along the x axis from the origin to x = 80.0 cm carries electric charge with uniform density. At the point P with coordinates (x = 80.0 cm, y = 80.0 cm), this filament creates electric potential 100 V. Now we add another filament along the y axis, running from the origin to y = 80.0 cm, carrying the same amount of charge with the same uniform density. At the same point P, is the electric potential created by the pair of filaments (a) greater than 200 V, (b) 200 V, (c) 100 V, (d) between 0 and 200 V, or (e) 0?arrow_forwardA spherical capacitor is formed from two concentric spherical conducting spheres separated by vacuum. Tire inner sphere has radius 12.5 cm and the outer sphere has radius 14.8 cm. A potential difference of 120 V is applied to the capacitor, (a) What is the capacitance of the capacitor? tb) What is the magnitude of the electrical field at r = 12.6 cm, just outside the inner sphere? (c) What is the magnitude of the electrical field at r = 14.7 cm, just inside the outer sphere? (d) For a parallel-plate capacitor the electrical field is uniform in the region between the plates, except near the edges of the plates. Is this also true for a spherical capacitor?arrow_forward
- An electron moving parallel to the x axis has an initial speed of 3.70 106 m/s at the origin. Its speed is reduced to 1.40 105 m/s at the point x = 2.00 cm. (a) Calculate the electric potential difference between the origin and that point. (b) Which point is at the higher potential?arrow_forwardAt a certain distance from a charged particle, the magnitude of the electric field is 500 V/m and the electric potential is 3.00 kV. (a) What is the distance to the particle? (b) What is the magnitude of the charge?arrow_forwardA thin-walled, hollow, conducting cylinder with radius rb is concentric with a solid conducting cylinder with radius ra<rb. Each has length L. The two cylinders are attached by conducting wires to the terminals of a battery that supplies potential V. A solid cylindrical shell, with inner radius ra and outer radius R<rb, made of a material with dielectric constant K, slides between the conducting cylinders, as shown in (Figure 1). By changing the insertion distance x, we can alter the capacitance seen by the battery and therefore alter the amount of charge stored in this device. a)Determine the capacitance as a function of x. Express your answer in terms of the variables K, L, ra, rb, R, x, and constants ϵ0, π. b) If L = 12.0 cm, ra = 1.00 cm, rb = 4.00 cm, R = 3.00 cm, and K = 3.21, what is the capacitance when x = 0? c) What is the capacitance when x = L? d) What value of x results in 6.00 nC of charge on the positively charged cylinder plate when V = 1.00 kV?arrow_forward
- A disk with uniform surface charge density o = -7.60 uC/m? is oriented as shown in the diagram below. The field at a distance y from the center of a disk (of radius r = 0.420 m) and along its axis is given by E = 28, where ɛ, = 8.85 x 10-12 c2/(N · m2) is the permittivity of free space. What is the electric potential at a location P whose coordinates are (0, 0.145 m)? Take the electric potential at infinity to be zero. -22310.34 How is electric potential difference between two points defined in terms of the electric field vector and the displacement vector? V P (0, y)arrow_forwardCompute for the potential difference, in volts, in moving a charge from A(2, 0, 0) m to B(6, 0, 0) m against the electric field due to a disk charge of radius 8 m on the plane x = 0 centered at the origin. The disk has a total charge of 9 nC.arrow_forwardA conducting solid sphere of radius R has a total charge Qon it. The electric potential at a point at a distance r from the center varies as (r< R) 1 1arrow_forward
- Derive the capacitance for a cylindrical capacitor ( two conducting concentric cylinders of radius R1 and R2)arrow_forwardA dielectric cylinder with absolute permittivity ɛ, has radius b and height L. The bottom plate of the cylinder is positioned at x-y plane, concentric with the z-axis. The polarization vector in the dielectric cylinder is given = r Por, where Po is a constant. Find (a) Bound charge densities (b) The total charge of the cylinder. (c) Write the integral expression of the potential at P (0,0,L) explicitly. Define the integral limits and all the components in the integrant expression. Do not take the integral.arrow_forwardAn infinitely long cylindrical capacitor is made up of a conducting cylinder of radius ?? and a concentric conducting cylinder of radius ?? with ?? > ??. The common axis of the cylinders is the ?-axis and the region between the cylinders is empty. Because of symmetry, the scalar potential between the cylinders depends only on the radial coordinate ?: ? = ?(?). Use the Laplace equation in cylindrical coordinates to find the scalar potential in the region between the cylinders (that is, ?? ≥ ? ≥ ??). Determine the surface charge density on the surfaces of the inner and outer cylinders that face each other, then calculate the charge per unit length on each cylinder.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY