College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 25, Problem 66AP
A laboratory (astronomical) telescope is used to view a scale that is 300 cm from the objective, which has a focal length of 20.0 cm; the eyepiece has a focal length of 2.00 cm. Calculate the angular magnification when the telescope is adjusted for minimum eyestrain. Note: The object is not at infinity, so the simple expression m = fo/fe is not sufficiently accurate for this problem. Also, assume small angles, so that tan θ = θ.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A laboratory (astronomical) telescope is used to view a scale that is 300 cm from the objective, which has a focal length of 20.0 cm; the eyepiece has a focal length of 2.00 cm. Calculate the angular magnification when the telescope is adjusted for minimum eyestrain. Note: The object is not at infinity, so the simple expression m = fo/ fe is not sufficiently accurate for this problem. Also, assume small angles, so that tan θ ≈θ
Find an equation for the length L of a refracting telescope in terms of the focal length of the objective fo and the magnification m. (b) A knob adjusts the eyepiece forward and backward. Suppose the telescope is in focus with an eyepiece giving a magnification of 50.0. By what distance must the eyepiece be adjusted when the eyepiece is replaced, with a resulting magnification of 1.00 x 10 2? Must the eyepiece be adjusted backward or forward? Assume the objective lens has a focal length of 2.00 m.
A refracting telescope has an angular magnification of -83.00. The length of the barrel is 1.500 m. What are the focal lengths of (a) the objective and (b) the eyepiece?
Chapter 25 Solutions
College Physics
Ch. 25.2 - Two campers wish to start a fire during the day....Ch. 25.6 - Suppose you are observing a binary star with a...Ch. 25 - A lens is used to examine an object across a room....Ch. 25 - A CCD camera is equipped with a lens with constant...Ch. 25 - The optic nerve and the brain invert the image...Ch. 25 - Suppose you are observing the interference pattern...Ch. 25 - If you want to examine the fine detail of an...Ch. 25 - Compare and contrast the eye and a camera. What...Ch. 25 - Choose the option from each pair that makes the...Ch. 25 - Choose the option from each pair that makes the...
Ch. 25 - Explain why it is theoretically impossible to see...Ch. 25 - Large telescopes are usually reflecting rather...Ch. 25 - A patient has a near point of 1.25 m. Is she...Ch. 25 - A lens with a certain power is used as a simple...Ch. 25 - Suppose a microscopes resolution is diffraction...Ch. 25 - During LASIK eye surgery (laser-assisted in situ...Ch. 25 - If you increase the aperture diameter of a camera...Ch. 25 - A lens has a focal length of 28 cm and a diameter...Ch. 25 - A certain camera has f-numbers that range from 1.2...Ch. 25 - An f/2.80 CCD camera has a 105-mm focal length...Ch. 25 - A digital camera equipped with an f = 50.0-mm lens...Ch. 25 - A camera is being used with a correct exposure at...Ch. 25 - (a) Use conceptual arguments to show that the...Ch. 25 - A certain type of film requires an exposure time...Ch. 25 - A certain camera lens has a focal length of 175...Ch. 25 - The near point of a persons eye is 60.0 cm. To see...Ch. 25 - A patient cant see objects closer than 40.0 cm and...Ch. 25 - The accommodation limits for Nearsighted Nicks...Ch. 25 - Prob. 12PCh. 25 - An individual is nearsighted; his near point is...Ch. 25 - A particular nearsighted patient cant see objects...Ch. 25 - A particular patients eyes are unable to focus on...Ch. 25 - A patient has a near point of 45.0 cm and far...Ch. 25 - Prob. 17PCh. 25 - Prob. 18PCh. 25 - Prob. 19PCh. 25 - A person sees clearly wearing eyeglasses that have...Ch. 25 - A stamp collector uses a lens with 7.5-cm focal...Ch. 25 - When a drop of water is placed on a flat, clear...Ch. 25 - A biology student uses a simple magnifier to...Ch. 25 - A jewelers lens of focal length 5.0 cm is used as...Ch. 25 - A leaf of length h is positioned 71.0 cm in front...Ch. 25 - (a) What is the maximum angular magnification of...Ch. 25 - The desired overall magnification of a compound...Ch. 25 - Prob. 28PCh. 25 - Prob. 29PCh. 25 - A microscope has an objective lens with a focal...Ch. 25 - The two lenses of a compound microscope are...Ch. 25 - Prob. 32PCh. 25 - Prob. 33PCh. 25 - Prob. 34PCh. 25 - Suppose an astronomical telescope is being...Ch. 25 - Prob. 36PCh. 25 - Prob. 37PCh. 25 - An elderly sailor is shipwrecked on a desert...Ch. 25 - Prob. 39PCh. 25 - Prob. 40PCh. 25 - A converging lens with a diameter of 30.0 cm forms...Ch. 25 - Prob. 42PCh. 25 - Prob. 43PCh. 25 - (a) Calculate the limiting angle of resolution for...Ch. 25 - Prob. 45PCh. 25 - Prob. 46PCh. 25 - Prob. 47PCh. 25 - A spy satellite circles Earth at an altitude of...Ch. 25 - A diffraction grating has a second-order resolving...Ch. 25 - Prob. 50PCh. 25 - Prob. 51PCh. 25 - Monochromatic light is beamed into a Michelson...Ch. 25 - Light of wavelength 550. nm is used to calibrate a...Ch. 25 - Prob. 54PCh. 25 - An interferometer is used to measure the length of...Ch. 25 - The Michelson interferometer can be used to...Ch. 25 - A thin sheet of transparent material has an index...Ch. 25 - Prob. 58APCh. 25 - Prob. 59APCh. 25 - A person with a nearsighted eye has near and far...Ch. 25 - An American standard analog television picture...Ch. 25 - Prob. 62APCh. 25 - The near point of an eye is 75.0 cm. (a) What...Ch. 25 - Prob. 64APCh. 25 - A cataract-impaired lens in an eye may be...Ch. 25 - A laboratory (astronomical) telescope is used to...Ch. 25 - Prob. 67AP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Two thin lenses of focal lengths f1 = 15.0 and f2 = 10.0 cm, respectively, are separated by 35.0 cm along a common axis. The f1 lens is located to the left of the f2 lens. An object is now placed 50.0 cm to the left of the f1 lens, and a final image due to light passing though both lenses forms. By what factor is the final image different in size from the object? (a) 0.600 (b) 1.20 (c) 2.40 (d) 3.60 (e) none of those answersarrow_forwardWhat is the angular size of the Moon if viewed from a binocular that has a focal length of 1.2 cm for the eyepiece and a focal length of 8 cm for the objective? Use the radius of the moon 1.74106 m and the distance of the moon from the observer to be 3.8108m .arrow_forwardA converging lens made of crown glass has a focal length of 15.0 cm when used in air. If the lens is immersed in water, what is its focal length? (a) negative (b) less than 15.0 cm (c) equal to 15.0 cm (d) greater than 15.0 cm (e) none of those answersarrow_forward
- A large reflecting telescope has an objective mirror with a 10.0-rn radius of curvature. What angular magnification does it produce when a 3.00 m-focal length eyepiece is used?arrow_forwardThe accommodation limits for a nearsighted persons eyes are 18.0 cm and 80.0 cm. When he wears his glasses, he can see faraway objects clearly. At what minimum distance is he able to see objects clearly?arrow_forwardThe left face of a biconvex lens has a radius of curvature of magnitude 12.0 cm, and the right face has a radius of curvature of magnitude 18.0 cm. The index of refraction of the glass is 1.44. (a) Calculate the focal length of the lens for light incident from the left. (b) What If? After the lens is turned around to interchange the radii of curvature of the two faces, calculate the focal length of the lens for light incident from the left.arrow_forward
- In Figure P26.38, a thin converging lens of focal length 14.0 cm forms an image of the square abcd, which is hc = hb = 10.0 cm high and lies between distances of pd = 20.0 cm and pa = 30.0 cm from the lens. Let a, b, c, and d represent the respective corners of the image. Let qa represent the image distance for points a and b, qd represent the image distance for points c and d, hb represent the distance from point b to the axis, and hc represent the height of c. (a) Find qa, qd, hb, and hc. (b) Make a sketch of the image. (c) The area of the object is 100 cm2. By carrying out the following steps, you will evaluate the area of the image. Let q represent the image distance of any point between a and d, for which the object distance is p. Let h represent the distance from the axis to the point at the edge of the image between b and c at image distance q. Demonstrate that h=10.0q(114.01q) where h and q are in centimeters. (d) Explain why the geometric area of the image is given by qaqdhdq (e) Carry out the integration to find the area of the image. Figure P26.38arrow_forwardFigure P26.72 shows a thin converging lens for which the radii of curvature of its surfaces have magnitudes of 9.00 cm and 11.0 cm. The lens is in front of a concave spherical mirror with the radius of curvature R = 8.00 cm. Assume the focal points F1 and F2 of the lens are 5.00 cm from the center of the lens. (a) Determine the index of refraction of the lens material. The lens and mirror are 20.0 cm apart, and an object is placed 8.00 cm to the left of the lens. Determine (b) the position of the final image and (c) its magnification as seen by the eye in the figure. (d) Is the final image inverted or upright? Explain.arrow_forwardAn unknown planet at a distance of 1012 m from Earth is observed by a telescope that has a focal length of the eyepiece of 1 cm and a focal length of the objective of I m. If the far away planet is seen to subtend an angle of 105 radian at the eyepiece, what is the size of the planet?arrow_forward
- What is the angular magnification of a telescope that has a 100 cm-focal length objective and a 2.50 cm-focal length eyepiece?arrow_forwardA 7.5 binocular produces an angular magnification of —7.50, acting like a telescope. (Mirrors are used to make the image upright.) If the binoculars have objective lenses with a 75.0-cm focal length, what is the focal length of the eyepiece lenses?arrow_forwardA 7.5x binocular produces an angular magnification of 7.50, acting like a telescope. (Mirrors are used to make the image upright.) If the binoculars have objective lenses with a 75.0 cm focal length, what is the focal length of the eyepiece lenses?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Convex and Concave Lenses; Author: Manocha Academy;https://www.youtube.com/watch?v=CJ6aB5ULqa0;License: Standard YouTube License, CC-BY