College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 25, Problem 64AP
To determine
The radius of curvature of the cornea for which distant objects will be focused on the retina.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The eye can be treated as a spherical optical surface filled with a fluid with an index
of refraction of 1.34. An object with a height 9.50 cm is placed 44.5 cm from the
front of the eye. A clear image forms on the retina at the back of the eye with an
image height of -3.55 mm. What is the diameter of the eye? Give your answer in cm
to 2 decimal places but do NOT include units with your answer.
The smallest object we can resolve with our eye is limited by the size of the light receptor cells in the retina. In order for us to distinguish any detail in an object, its image cannot be any smaller than a single retinal cell. Although the size depends on the type of cell (rod or cone), a diameter of a few microns 1mm2 is typical near the center of the eye. We shall model the eye as a sphere 2.50 cm in diameter with a single thin lens at the front and the retina at the rear, with light receptor cells 5.0 mm in diameter. (a) What is the smallest object you can resolve at a near point of 25 cm? (b) What angle is subtended by this object at the eye? Express your answer in units of minutes (1° = 60 min), and compare it with the typical experimental value of about 1.0 min.
The smallest object we can resolve with our eye is limited by the size of the light receptor cells in the retina. In order for us to distinguish any detail in an object, its image cannot be any smaller than a single retinal cell. Although the size depends on the type of cell (rod or cone), a diameter of a few microns 1mm2 is typical near the center of the eye. We shall model the eye as a sphere 2.50 cm in diameter with a single thin lens at the front and the retina at the rear, with light receptor cells 5.0 mm in diameter. (a) What is the smallest object you can resolve at a near point of 25 cm? (b) What angle is subtended by this object at the eye? Express your answer in units of minutes 11° = 60 min2, and compare it with the typical experimental value of about 1.0 min
Chapter 25 Solutions
College Physics
Ch. 25.2 - Two campers wish to start a fire during the day....Ch. 25.6 - Suppose you are observing a binary star with a...Ch. 25 - A lens is used to examine an object across a room....Ch. 25 - A CCD camera is equipped with a lens with constant...Ch. 25 - The optic nerve and the brain invert the image...Ch. 25 - Suppose you are observing the interference pattern...Ch. 25 - If you want to examine the fine detail of an...Ch. 25 - Compare and contrast the eye and a camera. What...Ch. 25 - Choose the option from each pair that makes the...Ch. 25 - Choose the option from each pair that makes the...
Ch. 25 - Explain why it is theoretically impossible to see...Ch. 25 - Large telescopes are usually reflecting rather...Ch. 25 - A patient has a near point of 1.25 m. Is she...Ch. 25 - A lens with a certain power is used as a simple...Ch. 25 - Suppose a microscopes resolution is diffraction...Ch. 25 - During LASIK eye surgery (laser-assisted in situ...Ch. 25 - If you increase the aperture diameter of a camera...Ch. 25 - A lens has a focal length of 28 cm and a diameter...Ch. 25 - A certain camera has f-numbers that range from 1.2...Ch. 25 - An f/2.80 CCD camera has a 105-mm focal length...Ch. 25 - A digital camera equipped with an f = 50.0-mm lens...Ch. 25 - A camera is being used with a correct exposure at...Ch. 25 - (a) Use conceptual arguments to show that the...Ch. 25 - A certain type of film requires an exposure time...Ch. 25 - A certain camera lens has a focal length of 175...Ch. 25 - The near point of a persons eye is 60.0 cm. To see...Ch. 25 - A patient cant see objects closer than 40.0 cm and...Ch. 25 - The accommodation limits for Nearsighted Nicks...Ch. 25 - Prob. 12PCh. 25 - An individual is nearsighted; his near point is...Ch. 25 - A particular nearsighted patient cant see objects...Ch. 25 - A particular patients eyes are unable to focus on...Ch. 25 - A patient has a near point of 45.0 cm and far...Ch. 25 - Prob. 17PCh. 25 - Prob. 18PCh. 25 - Prob. 19PCh. 25 - A person sees clearly wearing eyeglasses that have...Ch. 25 - A stamp collector uses a lens with 7.5-cm focal...Ch. 25 - When a drop of water is placed on a flat, clear...Ch. 25 - A biology student uses a simple magnifier to...Ch. 25 - A jewelers lens of focal length 5.0 cm is used as...Ch. 25 - A leaf of length h is positioned 71.0 cm in front...Ch. 25 - (a) What is the maximum angular magnification of...Ch. 25 - The desired overall magnification of a compound...Ch. 25 - Prob. 28PCh. 25 - Prob. 29PCh. 25 - A microscope has an objective lens with a focal...Ch. 25 - The two lenses of a compound microscope are...Ch. 25 - Prob. 32PCh. 25 - Prob. 33PCh. 25 - Prob. 34PCh. 25 - Suppose an astronomical telescope is being...Ch. 25 - Prob. 36PCh. 25 - Prob. 37PCh. 25 - An elderly sailor is shipwrecked on a desert...Ch. 25 - Prob. 39PCh. 25 - Prob. 40PCh. 25 - A converging lens with a diameter of 30.0 cm forms...Ch. 25 - Prob. 42PCh. 25 - Prob. 43PCh. 25 - (a) Calculate the limiting angle of resolution for...Ch. 25 - Prob. 45PCh. 25 - Prob. 46PCh. 25 - Prob. 47PCh. 25 - A spy satellite circles Earth at an altitude of...Ch. 25 - A diffraction grating has a second-order resolving...Ch. 25 - Prob. 50PCh. 25 - Prob. 51PCh. 25 - Monochromatic light is beamed into a Michelson...Ch. 25 - Light of wavelength 550. nm is used to calibrate a...Ch. 25 - Prob. 54PCh. 25 - An interferometer is used to measure the length of...Ch. 25 - The Michelson interferometer can be used to...Ch. 25 - A thin sheet of transparent material has an index...Ch. 25 - Prob. 58APCh. 25 - Prob. 59APCh. 25 - A person with a nearsighted eye has near and far...Ch. 25 - An American standard analog television picture...Ch. 25 - Prob. 62APCh. 25 - The near point of an eye is 75.0 cm. (a) What...Ch. 25 - Prob. 64APCh. 25 - A cataract-impaired lens in an eye may be...Ch. 25 - A laboratory (astronomical) telescope is used to...Ch. 25 - Prob. 67AP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Two stars that are 109km apart are viewed by a telescope and found to be separated by an angle of 105 radians. If the eyepiece of the telescope has a focal length of 1.5 cm and the objective has a focal length of 3 meters, how far away are the stars from the observer?arrow_forwardThe left face of a biconvex lens has a radius of curvature of magnitude 12.0 cm, and the right face has a radius of curvature of magnitude 18.0 cm. The index of refraction of the glass is 1.44. (a) Calculate the focal length of the lens for light incident from the left. (b) What If? After the lens is turned around to interchange the radii of curvature of the two faces, calculate the focal length of the lens for light incident from the left.arrow_forwardFigure P26.72 shows a thin converging lens for which the radii of curvature of its surfaces have magnitudes of 9.00 cm and 11.0 cm. The lens is in front of a concave spherical mirror with the radius of curvature R = 8.00 cm. Assume the focal points F1 and F2 of the lens are 5.00 cm from the center of the lens. (a) Determine the index of refraction of the lens material. The lens and mirror are 20.0 cm apart, and an object is placed 8.00 cm to the left of the lens. Determine (b) the position of the final image and (c) its magnification as seen by the eye in the figure. (d) Is the final image inverted or upright? Explain.arrow_forward
- A converging lens made of crown glass has a focal length of 15.0 cm when used in air. If the lens is immersed in water, what is its focal length? (a) negative (b) less than 15.0 cm (c) equal to 15.0 cm (d) greater than 15.0 cm (e) none of those answersarrow_forwardA lamp of height S cm is placed 40 cm in front of a converging lens of focal length 20 cm. There is a plane mirror 15 cm behind the lens. Where would you find the image when you look in the mirror?arrow_forwardThe end of a solid glass rod of refractive index 1.50 is polished to have the shape of a hemispherical surface of radius 1.0 cm. A small object is placed in air (refractive index 1.00) on the axis 5.0 cm to the left of the vertex. Determine the position of the image.arrow_forward
- Figure P38.43 shows a concave meniscus lens. If |r1| = 8.50 cm and |r2| = 6.50 cm, find the focal length and determine whether the lens is converging or diverging. The lens is made of glass with index of refraction n = 1.55. CHECK and THINK: How do your answers change if the object is placed on the right side of the lens? FIGURE P38.43arrow_forwardFigure P36.95 shows a thin converging lens for which the radii of curvature of its surfaces have magnitudes of 9.00 cm and 11.0 cm. The lens is in front of a concave spherical mirror with the radius of curvature R = 8.00 cm. Assume the focal points F1 and F2 of the lens are 5.00 cm from the center of the lens, (a) Determine the index of refraction of the lens material. The lens and mirror are 20.0 cm apart, and an object is placed 8.00 cm to the left of the lens. Determine (b) the position of the filial image and (c) its magnification as seen by the eye in the figure. (d) Is the final image inverted or upright? Explain.arrow_forwardThe index of refraction for water is about 43. What happens as a beam of light travels from air into water? (a) Its speed increases to 43c, and its frequency decreases. (b) Its speed decreases to 34c, and its wavelength decreases by a factor of 34. (c) Its speed decreases to 34c, and its wavelength increases by a factor of 43. (d) Its speed and frequency remain the same. (e) Its speed decreases to 34c, and its frequency increases.arrow_forward
- Two thin lenses of focal lengths f1 = 15.0 and f2 = 10.0 cm, respectively, are separated by 35.0 cm along a common axis. The f1 lens is located to the left of the f2 lens. An object is now placed 50.0 cm to the left of the f1 lens, and a final image due to light passing though both lenses forms. By what factor is the final image different in size from the object? (a) 0.600 (b) 1.20 (c) 2.40 (d) 3.60 (e) none of those answersarrow_forwardThe disk of the Sun subtends an angle of 0.533 at the Earth. What are (a) the position and (b) the diameter of the solar image formed by a concave spherical mirror with a radius of curvature of magnitude 3.00 m?arrow_forwardA ray of light strikes a flat, 2.00-cm-thick block of glass (n = 1.50) at ail angle of 30.0 with respect to the normal (Fig. P22.18). (a) Find the angle of refraction at the lop surface. (b) Find the angle of incidence at the bottom surface and the refracted angle. (c) Find the lateral distance d by which the light beam is shifted. (d) Calculate the speed of light in the glass and (e) the time required for the light to pass through the glass block. (f) Is the travel time through the block affected by the angle of incidence? Explain.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Convex and Concave Lenses; Author: Manocha Academy;https://www.youtube.com/watch?v=CJ6aB5ULqa0;License: Standard YouTube License, CC-BY