Organic Chemistry, 3e WileyPLUS Registration Card + Loose-leaf Print Companion
Organic Chemistry, 3e WileyPLUS Registration Card + Loose-leaf Print Companion
3rd Edition
ISBN: 9781119340577
Author: Klein
Publisher: Wiley (WileyPLUS Products)
Question
Book Icon
Chapter 25, Problem 64PP
Interpretation Introduction

Interpretation:

Form of Asp-Lys-Phe that predominates at physiological pH need to be drawn.

Concept introduction:

Bond-line structure is the representation of organic structural formulas in a shorthand manner.  In this case only the bond between carbon and other atoms are shown except hydrogen.  It is understood that all the remaining valency to be filled by hydrogen.  Apart from carbon atoms the other atoms are shown along with hydrogen.  For drawing a peptide sequence in bond-line structure the steps need to be followed are,

  • Draw the peptide with correct number of residues
  • The side chain associated with the residue has to be identified
  • Assign proper configuration for the residues

Amino acid has both carboxylic acid and amine functional group.  In presence of acid or base either one form will predominate which depends upon the pKa value.  Usually the carboxylic acid group is deprotonated first and then the amino group is deprotonated.  At higher pH the carboxylic acid gets deprotonated and at lower pH the amino group gets protonated.

  • The carboxylic acid form will predominate over carboxylate form if pH<pKa and vice-versa.
  • The protonated form of α amino will predominate over the  α amino form if pH<pKa and vice-versa.
  • If side chain is present the same rule as above applies.

Physiological pH means it is the pH of 7.4

To draw : To draw structure of Asp-Lys-Phe and the form that predominates at physiological pH

Blurred answer
Students have asked these similar questions
Considering the important roles of biothiols in lysosomes of live organisms, and unique photophysical / photochemical properties of ruthenium(II) complexes, a novel ruthenium(II) complex, Ru-2, has been developed as a molecular probe for phosphorescence and time-gated luminescence assay of biothiols in human sera, live cells, and in vivo. Ru-2 is weakly luminescent due to the effective photoinduced electron transfer (PET) from Ru(II) luminophore to electron acceptor, 2,4-dinitrobenzene-sulfonyl (DNBS). In the presence of biothiols, such as glutathione (GSH), cysteine (Cys), and homocysteine (Hcy), the emission of Ru-2 solution was switched ON, as a result of the cleavage of quencher to form the product, Ru-1. Ru-2 showed high selectivity and sensitivity for the detection of biothiols under physiological conditions, with detection limits of 62 nM, 146 nM, and 115 nM for GSH, Cys, and Hcy, respectively. The emission lifetimes of Ru-1 and Ru-2 were measured to be 405 and 474 ns,…
In an effort to reduce costs and increase the accessibility of instruments that utilize spectrophotometric detection, some researchers are beginning to experiment with 3D-printed parts. One example of this is the 3D-printed flow cell, shown at right. This device was made using polylactic acid and accommodates a LED at one end and a detector at the other. It can be used for standalone flow injection spectrophotometry or coupled to a chromatographic separation to be used as a detector.  Explain why the sensitivity varies with the length of the flow cell, as shown in the data below. Could this setup be used for fluorescence analysis? Why or why not?
The dark lines in the solar spectrum were discovered by Wollaston and cataloged by Fraunhofer in the early days of the 19th century. Some years later, Kirchhoff explained the appearance of the dark lines:  the sun was acting as a continuum light source and metals in the ground state in its atmosphere were absorbing characteristic narrow regions of the spectrum. This discovery eventually spawned atomic absorption spectrometry, which became a routine technique for chemical analysis in the mid-20th century. Laboratory-based atomic absorption spectrometers differ from the original observation of the Fraunhofer lines because they have always employed a separate light source and atomizer. This article describes a novel atomic absorption device that employs a single source, the tungsten coil, as both the generator of continuum radiation and the atomizer of the analytes. A 25-μL aliquot of sample is placed on the tungsten filament removed from a commercially available 150-W light bulb. The…

Chapter 25 Solutions

Organic Chemistry, 3e WileyPLUS Registration Card + Loose-leaf Print Companion

Ch. 25.2 - Prob. 10CCCh. 25.3 - Prob. 11CCCh. 25.3 - Prob. 12CCCh. 25.3 - Prob. 13CCCh. 25.3 - Prob. 2LTSCh. 25.3 - Prob. 14PTSCh. 25.3 - Prob. 15ATSCh. 25.3 - Prob. 16ATSCh. 25.3 - Prob. 17CCCh. 25.3 - Prob. 18CCCh. 25.3 - Prob. 19CCCh. 25.3 - Prob. 20CCCh. 25.4 - Prob. 3LTSCh. 25.4 - Prob. 21PTSCh. 25.4 - Prob. 22ATSCh. 25.4 - Prob. 23ATSCh. 25.4 - Prob. 24ATSCh. 25.4 - Prob. 25CCCh. 25.4 - Prob. 26CCCh. 25.4 - Prob. 27CCCh. 25.4 - Prob. 28CCCh. 25.4 - Prob. 29CCCh. 25.5 - Prob. 30CCCh. 25.5 - Prob. 4LTSCh. 25.5 - Prob. 31PTSCh. 25.5 - Prob. 32ATSCh. 25.5 - Prob. 33ATSCh. 25.6 - Prob. 5LTSCh. 25.6 - Prob. 34PTSCh. 25.6 - Prob. 35ATSCh. 25.6 - Prob. 36ATSCh. 25.6 - Prob. 6LTSCh. 25.6 - Prob. 37PTSCh. 25.6 - Prob. 38ATSCh. 25.7 - Prob. 39CCCh. 25 - Prob. 40PPCh. 25 - Prob. 41PPCh. 25 - Prob. 42PPCh. 25 - Prob. 43PPCh. 25 - Prob. 44PPCh. 25 - Prob. 45PPCh. 25 - Prob. 46PPCh. 25 - Prob. 47PPCh. 25 - Prob. 48PPCh. 25 - Prob. 49PPCh. 25 - Prob. 50PPCh. 25 - Prob. 51PPCh. 25 - Prob. 52PPCh. 25 - Prob. 53PPCh. 25 - Prob. 54PPCh. 25 - Prob. 55PPCh. 25 - Prob. 56PPCh. 25 - Prob. 57PPCh. 25 - Prob. 58PPCh. 25 - Prob. 59PPCh. 25 - Prob. 60PPCh. 25 - Prob. 61PPCh. 25 - Prob. 62PPCh. 25 - Prob. 63PPCh. 25 - Prob. 64PPCh. 25 - Prob. 65PPCh. 25 - Prob. 66PPCh. 25 - Prob. 67PPCh. 25 - Prob. 68PPCh. 25 - Prob. 69PPCh. 25 - Prob. 70PPCh. 25 - Prob. 71PPCh. 25 - Prob. 72PPCh. 25 - Prob. 73PPCh. 25 - Prob. 74PPCh. 25 - Prob. 75PPCh. 25 - Prob. 76PPCh. 25 - Prob. 77PPCh. 25 - Prob. 78PPCh. 25 - Prob. 79PPCh. 25 - Prob. 80PPCh. 25 - Prob. 81PPCh. 25 - Prob. 82PPCh. 25 - Prob. 83PPCh. 25 - Prob. 84IPCh. 25 - Prob. 85IPCh. 25 - Prob. 86IPCh. 25 - Prob. 87IPCh. 25 - Prob. 88IPCh. 25 - Prob. 89IPCh. 25 - Prob. 90CPCh. 25 - We saw in Section 25.6 that DCC can be used to...Ch. 25 - Prob. 92CP
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY