
Electric Motors and Control Systems
2nd Edition
ISBN: 9780073373812
Author: Frank D. Petruzella
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Question
Chapter 2.5, Problem 4DT
To determine
The reason that AC-squirrel cage induction motor is most dominantly used in the present time.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Not use ai please
NEED HANDWRITTEN SOLUTION DO NOT USE AI OR CHATGPT
2) Determine the voltage gain of the follower depicted in Fig. 2. Assume Is= 7 × 10-16.
B = 100, VA = 5 V. Also assume the capacitors are very large. (40 points)
Chapter 2 Solutions
Electric Motors and Control Systems
Ch. 2.1 - Define the term motorcontrol circuit.Ch. 2.1 - Why are symbols used to represent components...Ch. 2.1 - An electrical circuit contains three pilot lights....Ch. 2.1 - Describe the basic structure of an electrical...Ch. 2.1 - Prob. 5RQCh. 2.1 - The contacts of a pushbutton switch open when...Ch. 2.1 - A relay coil labeled TR contains three...Ch. 2.1 - A rung on a ladder diagram requires that two...Ch. 2.1 - Prob. 9RQCh. 2.1 - The wire identification labels on several wires of...
Ch. 2.1 - A broken line representing a mechanical functionon...Ch. 2.2 - What is the main purpose of a wiring diagram?Ch. 2.2 - In addition to numbers, what other method can...Ch. 2.2 - Prob. 3RQCh. 2.2 - Prob. 4RQCh. 2.2 - Prob. 5RQCh. 2.2 - What is the main purpose of a single-line diagram?Ch. 2.2 - Prob. 7RQCh. 2.2 - Prob. 8RQCh. 2.3 - Prob. 1RQCh. 2.3 - Prob. 2RQCh. 2.3 - Prob. 3RQCh. 2.3 - Prob. 4RQCh. 2.3 - Prob. 5RQCh. 2.3 - Prob. 6RQCh. 2.3 - In what phase configurations are AC induction...Ch. 2.3 - Prob. 8RQCh. 2.3 - Prob. 9RQCh. 2.3 - Prob. 10RQCh. 2.3 - Prob. 11RQCh. 2.3 - Prob. 12RQCh. 2.3 - Prob. 13RQCh. 2.3 - Prob. 14RQCh. 2.3 - Prob. 15RQCh. 2.3 - Prob. 16RQCh. 2.3 - Prob. 17RQCh. 2.3 - Prob. 18RQCh. 2.3 - Prob. 19RQCh. 2.3 - Prob. 20RQCh. 2.3 - Prob. 21RQCh. 2.3 - Prob. 22RQCh. 2.4 - Interpret what each of the following pieces of...Ch. 2.4 - List three applications where a motor service...Ch. 2.4 - Prob. 3RQCh. 2.4 - Prob. 4RQCh. 2.4 - Prob. 5RQCh. 2.4 - Prob. 6RQCh. 2.4 - Prob. 7RQCh. 2.4 - Prob. 8RQCh. 2.5 - How are the contacts of a manual motor...Ch. 2.5 - Prob. 2RQCh. 2.5 - Prob. 3RQCh. 2.5 - Prob. 4RQCh. 2.5 - Prob. 1TCh. 2.5 - Prob. 2TCh. 2.5 - Prob. 4TCh. 2.5 - Prob. 5TCh. 2.5 - Prob. 6TCh. 2.5 - Prob. 1DTCh. 2.5 - Prob. 2DTCh. 2.5 - Search thelnternet forelectric motor...Ch. 2.5 - Prob. 4DTCh. 2.5 - Prob. 5DT
Knowledge Booster
Similar questions
- Calculate the voltage gain and I/O impedance of circuits shown in Fig. 1. Assume (60 points- each section 20 points) J Vina кат Vb J Vina кат VCC VCC VCC Vino - Vout - Vout Rs w Q2 Q2 (c) (b) Q2 = (a) - Voutarrow_forwardNot use ai please letarrow_forwardUse PSpice to create the circuit and show the circuit along with simulation results. Also please explicitly answer the question (i.e. have the answer make sense and not in parts where there is no final answer.)arrow_forward
- Problem 5 Plot the impulse response of the system shown below. Hint: This is done graphically with 4 convolutions. x[n] D y[n]< D D D D D D D D D D Darrow_forwardUse PSpice to create the circuit. Also please explicitly answer whether the load line intersects the -0.7 line at the computed point.arrow_forwardIn class, we wrote on the blackboard a byte addressable memory where each element was 2 nibbles: For example: Main memory A Address Offset Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data 0 1 2 3 4 5 6 0 Ox10 0x00 0x02 0x2B Ox4F 0x00 0x00 0x00 0x11 0x12 0x20 0x10 0x10 0x00 OxFF Ox3E DxDD 0x00 0x00 0x00 0x00 0x00 0x00 0x00 7 0x1C 0x00 8 9 A 0x00 0x00 0x01 0x00 0x00 0x01 0x00 0x00 0x01 B с D E 0x00 0x05 0x04 0x03 0x02 0x00 Ox3D 0x00 0x1C Ox2F 0x00 Ox1F OxFF 0x03 0x02 F What is the contents of address 0x1C in main memory A for a 32 bit machine using Big Endian format? What is the contents of address 0x1C in main memory A for a 16 bit machine using Little Endian format? What is the contents of the indirect address at 0x04 in main memory A for a Big Endian 32 bit machine ((0x4))? What is the contents of 4(0x10) in main memory A for a 16 bit Little Endian machine? What is the contents of the address 16(0xC) for a 64 bit Little Endian machine?arrow_forward
- Problem 4 Consider the system shown below where h₁[n] = {2,1,2} and h₂[n] = (n+1) u[n] (− means subtraction). h₂[n] x [n]- h₁[n] бел-27- h₂[n] y[n] (a) Determine the impulse response of the system and plot it for n = -3,...,6. (b) Determine graphically the response of the system to the following input. x[n] 2 4 5arrow_forwardNot use ai pleasearrow_forwardDesign a self-biased JFET circuit (Fig. 6) assuming VGS(0) = -1.3 and ipss= 20 mA. We require a VGS = -0.7. Assume a supply voltage of 15 volts. Draw the load line for this circuit using Fig. 4b once you have selected the appropriate values for the components. Does the load line intersect the VGS = -0.7 volt line at the computed in point? RD. RG Rs 12 20nA GS = -1.3 VGS 10nA Fig. 6. Circuit for Examples 2 &3. 50 100 150 200 □ ID(J1) UDS Fig. 4b. The IV characteristics of an n-channel JFET (J113). The plots are for VGs increments of 0.05 volts. VGS(0) -1.3. The yellow and blue load lines are for examples 2 &3, respectively.arrow_forward
- Find the operating point and the load line of a voltage-divider JFET biasing circuit using the following parameters: VGS(0) = -1.3 and Vcc = 15 volts. Assume ipss = 20 mA, RG₁ = RG2 = 10 kn, RD = 300, and Rs = 1 kn. Use Fig. 4b for the IV characteristic of the JFET. 20nA GS=-1.3 GS 10nA- 50 100 150 200 ID(J1) UDS Fig. 4b. The IV characteristics of an n-channel JFET (J113). The plots are for VGs increments of 0.05 volts. VGS(0) -1.3. The yellow and blue load lines are for examples 2 &3, respectively.arrow_forwardDesign the JFET circuit for the largest in swing. Use the self-bias circuit shown in Fig. 6. Assume that VGS (0) = -1.3 and Vcc = 15 volts. Furthermore, assume that ipss = 20 mA. Using Fig. 4b, draw the load line and identify the Q point. Explain why this will allow the largest swing. Use ip = ipss (1- VGS VGS(0) to show what happens to i, and vps when you have a swing of 0.2 volts in vcs form its operating point (that is, change vas by ±0.2 volts and compute the corresponding iD and VDs). RD RG Rs 0 20nA GS=-1.3 VGS 12 10nA -0- Fig. 6. Circuit for Examples 2 &3. BA-C 50 100 150 200 □ ID(J1) UDS Fig. 4b. The IV characteristics of an n-channel JFET (J113). The plots are for VGs increments of 0.05 volts. VGS(0) -1.3. The yellow and blue load lines are for examples 2 &3, respectively.arrow_forwardplease do the correct VI chrastaristics curve on excel. I am not sure if mine is correctarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Delmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage Learning

Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning