Universe: Stars And Galaxies
6th Edition
ISBN: 9781319115098
Author: Roger Freedman, Robert Geller, William J. Kaufmann
Publisher: W. H. Freeman
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 25, Problem 43Q
To determine
The importance to measure expansion rate and how it is measured.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
1. The current (critical) density of our universe is pe = 10-26kg/m³. Assume the universe is
filled with cubes with equal size that each contain one person of m = 100kg. What would
the length of the side of such a cube have to be in order to give the correct critical density?
How many hydrogen atoms would you need in a box of 1 m³ to reach the critical density?
The matter we know, which consists mostly of hydrogen, constitutes only 4.8% of the current
critical energy density of our universe. So how many hydrogen atoms are actually in a box
of 1 m3 in our universe? Deep space is very empty and a much better vacuum than we can
obtain on earth in a laboratory.
What would be your estimate for the age of the universe if you measured Hubbleʹs constant to be 33 km/s/Mly? You can assume that the expansion rate has remained unchanged during the history of the universe.
I asked the following question and was given the attached solution:
Suppose that the universe were full of spherical objects, each of mass m and radius r . If the objects were distributed uniformly throughout the universe, what number density (#/m3) of spherical objects would be required to make the density equal to the critical density of our Universe?
Values:
m = 4 kg
r = 0.0407 m
Answer must be in scientific notation and include zero decimal places (1 sig fig --- e.g., 1234 should be written as 1*10^3)
I don't follow the work and I got the wrong answer, so please help and show your work as I do not follow along easily
thanks
Chapter 25 Solutions
Universe: Stars And Galaxies
Ch. 25 - Prob. 1QCh. 25 - Prob. 2QCh. 25 - Prob. 3QCh. 25 - Prob. 4QCh. 25 - Prob. 5QCh. 25 - Prob. 6QCh. 25 - Prob. 7QCh. 25 - Prob. 8QCh. 25 - Prob. 9QCh. 25 - Prob. 10Q
Ch. 25 - Prob. 11QCh. 25 - Prob. 12QCh. 25 - Prob. 13QCh. 25 - Prob. 14QCh. 25 - Prob. 15QCh. 25 - Prob. 16QCh. 25 - Prob. 17QCh. 25 - Prob. 18QCh. 25 - Prob. 19QCh. 25 - Prob. 20QCh. 25 - Prob. 21QCh. 25 - Prob. 22QCh. 25 - Prob. 23QCh. 25 - Prob. 24QCh. 25 - Prob. 25QCh. 25 - Prob. 26QCh. 25 - Prob. 27QCh. 25 - Prob. 28QCh. 25 - Prob. 29QCh. 25 - Prob. 30QCh. 25 - Prob. 31QCh. 25 - Prob. 32QCh. 25 - Prob. 33QCh. 25 - Prob. 34QCh. 25 - Prob. 35QCh. 25 - Prob. 36QCh. 25 - Prob. 37QCh. 25 - Prob. 38QCh. 25 - Prob. 39QCh. 25 - Prob. 40QCh. 25 - Prob. 41QCh. 25 - Prob. 42QCh. 25 - Prob. 43QCh. 25 - Prob. 44QCh. 25 - Prob. 45QCh. 25 - Prob. 46QCh. 25 - Prob. 47QCh. 25 - Prob. 48QCh. 25 - Prob. 49QCh. 25 - Prob. 50QCh. 25 - Prob. 51QCh. 25 - Prob. 52QCh. 25 - Prob. 53QCh. 25 - Prob. 54QCh. 25 - Prob. 55Q
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Why cant an open universe have a center? How can a closed universe not have a center?arrow_forwardIn which model universe does the average density of the Universe equal the critical density?arrow_forwardIf a galaxy is 9.0 Mpc away from Earth and recedes at 488 km/s, what is H0 (in km/s/Mpc)? km/s/Mpc What is the Hubble time (in yr)? years How old (in yr) would the universe be, assuming space-time is flat and the expansion of the universe has not been accelerating? How would acceleration change your answer? A.If the expansion of the Universe has been accelerating, the Universe could be substantially younger than the value entered above. BIf the expansion of the Universe has been accelerating, the Universe could be substantially older than the value entered above.arrow_forward
- Suppose that the universe were full of spherical objects, each of mass m and radius r . If the objects were distributed uniformly throughout the universe, what number density (#/m3) of spherical objects would be required to make the density equal to the critical density of our Universe? Values: m = 10 kg r = 0.0399 m Answer must be in scientific notation and include zero decimal places (1 sig fig --- e.g., 1234 should be written as 1*10^3)arrow_forwardmathematician Archimedes, responding to a claim that the number of grains of sand was infinite, calculated that the number of grains of sand needed to fill the universe was on the order of 1063. Our understanding of the size of the universe has changed since then, and we now know that the observable universe alone is a sphere with a radius of 1026 m. Estimating the size of a grain of sand, A) Approximately how many grains of sand would fill the observable universe? B) How many times larger or smaller is this number than Archimedes' result?arrow_forwardThe matter density in the Universe today is Pm = -27 kg m-3. What would 2.7 x 10 be the value of the density parameter, 2o, if the Hubble constant had the value Ho = 38 km/s/Mpc? Assume the Universe does not contain dark energy and choose the option below that best matches your answer. Select one: O a. 0.1 O b. 2. О с. 1. O d. 0.7 О е. 0.5arrow_forward
- Does the universe have a center? Explain.arrow_forwardAssume the observable Universe is charge neutral, and that it contains n nuclei (hydrogen plus helium nuclei, ignoring other elements). Take the helium mass fraction as 1/4. How many electrons are there in the observable Universe? Enter your answer in scientific notation with one decimal place. Value: n = 4*1080arrow_forwardExplain briefly the main physical processes that occurred in the era of recombination. If the recombination era took place at a redshift (1 + z) = 1100, calculate the temperature of the Universe at the era of recombination considering that the Cosmic Microwave Background (CMB) is a perfect black body and today has a temperature T = 2.725 K. State the peak wavelength at which the Universe emitted its radiation during the era of recombination, expressing your answer in nm.arrow_forward
- Question A7 Consider the following line element, ds² = - dt² + a² (t) (da² + dy²) + b² (t) dz², where a(t) and b(t) are distinct functions. State whether or not this line element obeys the Cosmological Principle, if applied to describe the universe on large scales. Justify your answer.arrow_forwardExplain how astronomers determined that the universe is expanding.arrow_forwardThe matter density in the Universe today is ?m=2.7×10−27kgm−3. What would be the value of the density parameter, Ω0, if the Hubble constant had the value H0 = 38 km/s/Mpc?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning