Concept explainers
(a)
The number of wavelengths present in the spectrum of the light source.
(a)
Answer to Problem 43P
There are two spectral lines with wavelengths
Explanation of Solution
Write the expression to calculate the slit width.
Here, d is the slit width and n is the number of slits.
Substitute
Write the expression to calculate the first order wavelength for the smallest angle.
Here,
Substitute
Write the expression for the angle of second order lines for the above wavelength.
Substitute
Write the expression for the angle of third order lines for the above wavelength.
Substitute
Write the expression for the angle of fourth order lines for the above wavelength.
Substitute
Thus, these angles belong to the second order wavelengths and these angles could be omitted.
Write the expression to calculate the first order wavelength for the angle
Substitute
Write the expression for the angle of second order lines for the above wavelength.
Substitute
Write the expression for the angle of third order lines for the above wavelength.
Substitute
Thus, the angle corresponding the wavelength could be omitted.
Conclusion:
Therefore, there are two spectral lines with wavelengths
(b)
The number of spectral lines on one side of the central maximum.
(b)
Answer to Problem 43P
The number of spectral lines is
Explanation of Solution
Write the expression to calculate the slit width.
Here, d is the slit width and n is the number of slits.
Substitute
Write the expression to calculate order corresponding to the wavelength
Substitute
Write the expression to calculate order corresponding to the wavelength
Substitute
Thus, the total number of spectral lines is
Conclusion:
Therefore, the number of spectral lines is
Want to see more full solutions like this?
Chapter 25 Solutions
Physics
- No chatgpt plsarrow_forwardhelp me with the experimental set up for the excel i did. the grapharrow_forwardWhich of the following best describes how to calculate the average acceleration of any object? Average acceleration is always halfway between the initial acceleration of an object and its final acceleration. Average acceleration is always equal to the change in velocity of an object divided by the time interval. Average acceleration is always equal to the displacement of an object divided by the time interval. Average acceleration is always equal to the change in speed of an object divided by the time interval.arrow_forward
- The figure shows the velocity versus time graph for a car driving on a straight road. Which of the following best describes the acceleration of the car? v (m/s) t(s) The acceleration of the car is negative and decreasing. The acceleration of the car is constant. The acceleration of the car is positive and increasing. The acceleration of the car is positive and decreasing. The acceleration of the car is negative and increasing.arrow_forwardWhich figure could represent the velocity versus time graph of a motorcycle whose speed is increasing? v (m/s) v (m/s) t(s) t(s)arrow_forwardUnlike speed, velocity is a the statement? Poisition. Direction. Vector. Scalar. quantity. Which one of the following completesarrow_forward
- No chatgpt pls will upvote Already got wrong chatgpt answerarrow_forward3.63 • Leaping the River II. A physics professor did daredevil stunts in his spare time. His last stunt was an attempt to jump across a river on a motorcycle (Fig. P3.63). The takeoff ramp was inclined at 53.0°, the river was 40.0 m wide, and the far bank was 15.0 m lower than the top of the ramp. The river itself was 100 m below the ramp. Ignore air resistance. (a) What should his speed have been at the top of the ramp to have just made it to the edge of the far bank? (b) If his speed was only half the value found in part (a), where did he land? Figure P3.63 53.0° 100 m 40.0 m→ 15.0 marrow_forwardPlease solve and answer the question correctly please. Thank you!!arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON