Concept explainers
A proton’s speed as it passes point A is 50,000 m/s. It follows the trajectory shown in FIGURE P25.43. What is the proton’s speed at point B?
Living cells “pump” singly ionized sodium ions, Na+, from the inside of the cell to the outside to maintain a membrane potential
a. How much work must be done to move one sodium ion from the inside of the cell to the outside?
b. At rest, the human body uses energy at the rate of approximately 100 W to maintain basic
Want to see the full answer?
Check out a sample textbook solutionChapter 25 Solutions
PHY F/SCIENTIST MOD MASTERING 24 MO
- Figure P26.44 shows a rod of length = 1.00 m aligned with the y axis and oriented so that its lower end is at the origin. The charge density on the rod is given by = a + by, with a = 2.00 C/m2 and b = 1.00 C /m2. What is the electric potential at point P with coordinates (0, 25.0 cm)? A table of integrals will aid you in solving this problem.arrow_forwardRank the potential energies of the four systems of particles shown in Figure OQ20.6 from largest to smallest. Include equalities if appropriate. Figure OQ20.6arrow_forwardA source consists of three charged particles located at the vertices of a square (Fig. P26.32), where the square has sides of length 0.243 m. The charges are q1 = 35.0 nC, q2 = 65.0 nC, and q3 = 56.5 nC. Find the electric potential at point A located at the fourth vertex. FIGURE P26.32 Problems 32 and 33.arrow_forward
- A charged particle is moved in a uniform electric field between two points, A and B, as depicted in Figure P26.65. Does the change in the electric potential or the change in the electric potential energy of the particle depend on the sign of the charged particle? Consider the movement of the particle from A to B, and vice versa, and determine the signs of the electric potential and the electric potential energy in each possible scenario.arrow_forwardA line of charge with uniform charge density = 2.00 103 C/m lies along the x axis from x = 0.250 m to x = 0.250 m. a. What is the magnitude of the electric potential at (0, 1.000 m)? b. How much work is necessary to move a particle with a charge of 5.00 nC from very far away to (0, 1.000 m)?arrow_forwardFind the electric potential at the origin given the arrangement of charged particles shown in Figure P26.7. FIGURE P26.7 Problems 7 and 28.arrow_forward
- Two point charges, q1 = 2.0 C and q2 = 2.0 C, are placed on the x axis at x = 1.0 m and x = 1.0 m, respectively (Fig. P26.24). a. What are the electric potentials at the points P (0, 1.0 m) and R (2.0 m, 0)? b. Find the work done in moving a 1.0-C charge from P to R along a straight line joining the two points. c. Is there any path along which the work done in moving the charge from P to R is less than the value from part (b)? Explain.arrow_forwardAn electron moving parallel to the x axis has an initial speed of 3.70 106 m/s at the origin. Its speed is reduced to 1.40 105 m/s at the point x = 2.00 cm. (a) Calculate the electric potential difference between the origin and that point. (b) Which point is at the higher potential?arrow_forwardFigure P26.80 shows a wire with uniform charge per unit length = 2.25 nC/m comprised of two straight sections of length d = 75.0 cm and a semicircle with radius r = 25.0 cm. What is the electric potential at point P, the center of the semicircular portion of the wire? FIGURE P26.80arrow_forward
- An infinite number of charges with q = 2.0 C are placed along the x axis at x = 1.0 m, x = 2.0 m, x = 4.0 m, x = 8.0 m, and so on, as shown in Figure P26.78. Determine the electric potential at the point x = 0 due to this set of charges. Hint: Use the mathematical formula for a geometric series, 1+r+r2+r3+r4+=11r FIGURE P26.78arrow_forwardFigure P26.68 shows three small spheres with identical charges of 3.00 nC placed at the vertices of an equilateral triangle with side d = 2.50 cm. a. Is the electric potential due to the three spheres zero anywhere in the plane that contains the triangle, other than at infinity? b. What is the electric potential at the location of each sphere due to the other two spheres? FIGURE P26.68arrow_forward(a) Find the electric potential difference Ve required to stop an electron (called a stopping potential) moving with an initial speed of 2.85 107 m/s. (b) Would a proton traveling at the same speed require a greater or lesser magnitude of electric potential difference? Explain. (c) Find a symbolic expression for the ratio of the proton stopping potential and the electron stopping potential. Vp/Ve.arrow_forward
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning