Pearson eText -- Physics for Scientists and Engineers with Modern Physics -- Instant Access (Pearson+)
5th Edition
ISBN: 9780137488179
Author: Douglas Giancoli
Publisher: PEARSON+
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 25, Problem 3Q
When a flashlight is operated, what is being used up: battery current, battery voltage, battery energy, battery power, or battery resistance? Explain.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
#2 - For the previous problem, if the motor turns on when
the voltage across it is 80% of the battery voltage, what is
the ratio of the capacitor's charging time to its discharge
time?
7.2
CORRECT
R
Vc
Vo
Motor
1.6
PC
C
0.22
PC
does the voltage of the battery can decrease if you are using it? how?
QQ9) solve this question. please.
Chapter 25 Solutions
Pearson eText -- Physics for Scientists and Engineers with Modern Physics -- Instant Access (Pearson+)
Ch. 25.2 - If 1 million electrons per second pass a point in...Ch. 25.2 - Prob. 1BECh. 25.3 - Return to the Chapter-Opening Question, page 651,...Ch. 25.4 - Prob. 1DECh. 25.4 - Prob. 1EECh. 25.4 - Prob. 1FECh. 25.4 - How many 60-W 120-V lightbulbs can operate on a...Ch. 25.6 - Each channel of a stereo receiver is capable of an...Ch. 25 - What quantity is measured by a battery rating...Ch. 25 - When an electric cell is connected to a circuit,...
Ch. 25 - When a flashlight is operated, what is being used...Ch. 25 - One terminal of a car battery is said to be...Ch. 25 - When you turn on a water faucet, the water usually...Ch. 25 - Can a copper wire and an aluminum wire of the same...Ch. 25 - The equation P = V2/R indicates that the power...Ch. 25 - What happens when a lightbulb burns out?Ch. 25 - If the resistance of a small immersion heater (to...Ch. 25 - Prob. 10QCh. 25 - Explain why lightbulbs almost always burn out just...Ch. 25 - Which draws more current, a 100-W lightbulb or a...Ch. 25 - Electric power is transferred over large distances...Ch. 25 - A 15-A fuse blows repeatedly. Why is it dangerous...Ch. 25 - When electric lights are operated on low-frequency...Ch. 25 - Driven by ac power, the same electrons pass back...Ch. 25 - The heating element in a toaster is made of...Ch. 25 - Is current used up in a resistor? Explain.Ch. 25 - Compare the drift velocities and electric currents...Ch. 25 - A voltage V is connected across a wire of length l...Ch. 25 - Why is it more dangerous to turn on an electric...Ch. 25 - Prob. 1PCh. 25 - Prob. 2PCh. 25 - Prob. 3PCh. 25 - Prob. 4PCh. 25 - Prob. 5PCh. 25 - Prob. 6PCh. 25 - Prob. 7PCh. 25 - Prob. 8PCh. 25 - Prob. 9PCh. 25 - Prob. 10PCh. 25 - Prob. 11PCh. 25 - Prob. 12PCh. 25 - Prob. 13PCh. 25 - Prob. 14PCh. 25 - Prob. 15PCh. 25 - (II) A rectangular solid made of carbon has sides...Ch. 25 - (III) A hollow cylindrical resistor with inner...Ch. 25 - Prob. 63GP
Additional Science Textbook Solutions
Find more solutions based on key concepts
Name the components (including muscles) of the thoracic cage. List the contents of the thorax.
Human Physiology: An Integrated Approach (8th Edition)
The data were obtained from a use-dilution test comparing four disinfectants against Salmonella choleraesuis. G...
Microbiology: An Introduction
Fill in the blanks: a. The wrist is also known as the _________ region. b. The arm is also known as the _______...
Human Anatomy & Physiology (2nd Edition)
What percentage of Earths land surface do glaciers presently cover? ____________
Applications and Investigations in Earth Science (9th Edition)
The following data were obtained from a disk-diffusion test. Antibiotic Zone of Inhibition A 15 mm B 0 mm c 7 m...
Microbiology: An Introduction
Your bore cells, muscle cells, and skin cells look different because a. different kinds of genes are present in...
Campbell Essential Biology (7th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The- pair of capacitors in Figure P28.63 are fully charged by a 12.0-V battery. The battery is disconnected, and the switch is then closed. Alter 1.00 ms has elapsed, (a) how much charge remains 011 the 3.00-F capacitor? (b) How much charge remains on the 2.00-F capacitor? (c) What is the current in the resistor at this time?arrow_forwardSemi-truck or trucks use four large 12-V batteries. The starter systemrequires 24 V, while normal operation of the truck’s other electrical components utilizes 12 V. How could the four batteries be connected to produce 24 V? To produce 12 V? Why is 24 V better than 12 V for starting the truck’s engine (a very heavy load)?arrow_forwardFigure 21.55 shows how a bleeder resistor is used to discharge a capacitor after an electronic device is shut off allowing a person to work on the electronics with less risk of shock, (a) What is the time constant? (b) How long will it take to reduce the voltage on the capacitor to 0.250% (5% of 5%) of its full value once discharge begins? (c) If the capacitor is charged to a voltage V0through a 100-O resistance, calculate the time it takes to rise to 0.865V0(This is about two time constants.)arrow_forward
- A battery of terminal potential is connected to a lightbulb (Fig. 28.2). After a long time, the bulb stops working because the filament snaps. After the filament breaks, how much power is dissipated by the filament? Explain your answer.arrow_forwardThe immediate cause of many deaths is ventricular fibrillation, an uncoordinated quivering of the heart, as opposed to proper beating. An electric shock to the chest can cause momentary paralysis of the heart muscle, after which the heart will sometimes start organized beating again. A defibrillator is a device that applies a strong electric shock to the chest over a time of a few milliseconds. The device contains a capacitor of a few microfarads, charged to several thousand volts. Electrodes called paddles, about 8 cm across and coated with conducting paste, are held against the chest on both sides of the heart. Their handles are insulated to prevent injury to the operator, who calls Clear! and pushes a button on one paddle to discharge the capacitor through the patient's chest Assume an energy of 3.00 102 W s is to be delivered from a 30.0-F capacitor. To what potential difference must it be charged?arrow_forwardReferring to Figure CQ21.4, describe what happens to the light-bulb after the switch is closed. Assume the capacitor has a large capacitance and is initially uncharged. Also assume the light illuminates when connected directly across the battery terminals.arrow_forward
- Integrated Concepts A 12.0-V emf automobile battery has a terminal voltage of 16.0 V when being charged by a current of 10.0 A. (a) What is the battery’s internal resistance? (b) What power is dissipated inside the battery? (c) At what rate (in °C/min ) will its temperature increase if its mass is 20.0 kg and it has a specific heat of 0.300 kcal/kg. °C, assuming no heat escapes?arrow_forwardConstrue! Your Own Problem Consider a rechargeable lithium cell that is to be used to power a camcorder. Construct a problem in which you calculate the internal resistance of the cell during normal operation. Also, calculate the minimum voltage output of a battery charger to be used to recharge your lithium cell. Among the things to be considered are the emf and useful terminal voltage of a lithium cell and the current it should be able to supply to a camcorder.arrow_forwardIntegrated Concepts If you wish to take a picture of a bullet traveling at 500 m/s, then a very brief flash of light produced by an RC discharge through a flash tube can limit blurring. Assuming 1.00 mm of motion during one RC constant is acceptable, and given that the flash is driven by a 600F capacitor, what is the resistance in the flash tube?arrow_forward
- Integrated Concepts A flashing lamp in a Christmas earring is based on an RC discharge of a capacitor through its resistance. The effective duration of the flash is 0.250 s, during which it produces in average 0.500 W from an average 3.00 V. (a) What energy does it dissipate? (b) How much charge moves through the lamp? (c) Find the capacitance. (d) What is the resistance of the lamp?arrow_forwardA circuit contains a D-cell battery, a switch, a 20- resistor, and three 20-mF capacitors. The capacitors are connected in parallel, and the parallel connection of capacitors are connected in series with the switch, the resistor and the battery, (a) What is die equivalent capacitance of the circuit? (b) What is the KC time constant? (c) How long before the current decreases to 50% of the initial value once the switch is closed?arrow_forwardIn places such as hospital operating rooms or factories for electronic circuit boards, electric sparks must be avoided. A prison standing on a grounded floor and touching nothing else can typically have a body capacitance of 150 pF, in parallel with a foot capacitance of 80.0 pF produced by the dielectric soles of his or her shoes. The person acquires static electric charge from interactions with Ills or her surroundings. The static charge flows to ground through the equivalent resistance of the two shoe soles in parallel with each other. A pair of rubber-soled street shoes can present an equivalent resistance of 5.00 103 M. A pair of shoes with special static-dissipative soles can have an equivalent resistance of 1.00 M. Consider the persons body and shoes as forming an RC circuit with the ground. (a) How long does it take the rubber-soled shoes to reduce a persons potential from 3.00 103 V to 100? (b) How long does it take the static-dissipative shoes to do the same thing?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Ohm's law Explained; Author: ALL ABOUT ELECTRONICS;https://www.youtube.com/watch?v=PV8CMZZKrB4;License: Standard YouTube License, CC-BY