In constructing the number x in Example 4, how would you decide what to put in the 99th place?
Example 4A Cardinal Number Greater Than
We will reproduce Cantor’s argument that the seat of real numbers between 0 and 1 has cardinal number greater than
Although we would not actually know what the listing would be, for the sake of argument, let us assume that we had listed all the numbers between 0 and 1 as follows:
Although we have assumed that all numbers between 0 and 1 are listed, we will now show you how to construct a number x between 0 and 1 that is not on this list. We want x to be different from the first number on the list, so we will begin the decimal expansion of x with a digit other than a 6 in the tenths place, say x = 0.5…Because we don’t want x to equal the second number on the list, we make the hundredths place not equal to 3, say 4, so far, x=.54…(For this argument to work, we will never switch a number to 0 to 9.) Continuing this pattern, we make sure that x is different from the third number in the third decimal place, say 3 and different from the fourth number in the fourth decimal place, make it 5, and so on. At this point, x = 0.5435… By constructing x in this fashion, it cannot be the first number on the list, or the second, or the third, and so on. In fact, x will differ from every number on the list in at least one decimal place, so it cannot be any of the numbers on the list. This means that our assumption that we were able to match the numbers between 0 and 1 with the natural number is wrong So the cardinal number of this set is not
Want to see the full answer?
Check out a sample textbook solutionChapter 2 Solutions
Mathematics All Around (6th Edition)
Additional Math Textbook Solutions
Pathways To Math Literacy (looseleaf)
College Algebra (7th Edition)
Elementary Statistics: A Step By Step Approach
University Calculus: Early Transcendentals (4th Edition)
- A savings account is started with an initial deposit of $500. The account earns 1.5% interest compounded annually. (a) Write an equation to represent the amount of money in the account as a function of time in years. (b) Find the amount of time it takes for the account balance to reach $800. Show your work.arrow_forward(a) Use the fundamental theorem of algebra to determine the number of roots for 2x² +4x+7. (b) What are the roots of 2x² +4x+7? Show your work.arrow_forwardConsider the function f(x)=x³ + 2x² − 3 (a) Graph the function. (b) What are the x- and y-intercepts of the graph?arrow_forward
- Triangle ΔABC has side lengths of a = 15, b equals 15 times square root of 3 and c = 30 inches. Part A: Determine the measure of angle m∠B. Part B: Show how to use the unit circle to find tan B. Part C: Calculate the area of ΔABC.arrow_forwardPart A: Given sinθ = square root of 3/2, determine three possible angles θ on the domain [0,∞).Part B: Given θ = 675°, convert the value of θ to radians and find sec θ.arrow_forward7. Rank and Nullity • Prove the Rank-Nullity Theorem: dim(ker(T)) + dim(im(T)) = dim(V) for a linear transformation T: VW. • Compute the rank and nullity of the matrix: [1 2 37 C = 45 6 7 8 9arrow_forward
- 5. Inner Product Spaces • • Prove that the space C[a, b] of continuous functions over [a, b] with the inner product (f,g) = f f (x)g(x)dx is an inner product space. Use the Gram-Schmidt process to orthogonalize the vectors (1, 1, 0), (1, 0, 1), and (0, 1, 1).arrow_forward19. Block Matrices • Prove that the determinant of a block matrix: A B 0 D . is det(A) · det (D), where A and D are square matrices. • Show how block matrices are used in solving large-scale linear systems.arrow_forward6. Norms and Metrics • Show that the function || || norm on Rn. = √xT Ax, where A is a positive definite matrix, defines a . Prove that the matrix norm induced by the vector L²-norm satisfies ||A||2 ✓ max (ATA), where Amax is the largest eigenvalue.arrow_forward
- 2. Linear Transformations • • Let T: R3 R³ be a linear transformation such that T(x, y, z) = (x + y, y + z, z + → x). Find the matrix representation of T with respect to the standard basis. Prove that a linear transformation T : VV is invertible if and only if it is bijective.arrow_forward11. Positive Definiteness Prove that a matrix A is positive definite if and only if all its eigenvalues are positive.arrow_forward21. Change of Basis Prove that the matrix representation of a linear transformation T : V → V depends on the choice of basis in V. If P is a change of basis matrix, show that the transformation matrix in the new basis is P-¹AP.arrow_forward
- Algebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal LittellCollege AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningElementary Geometry For College Students, 7eGeometryISBN:9781337614085Author:Alexander, Daniel C.; Koeberlein, Geralyn M.Publisher:Cengage,
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage