Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term
5th Edition
ISBN: 9781133422013
Author: Raymond A. Serway; John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 25, Problem 28P
(a)
To determine
The critical angle for total internal reflection of sound at the concrete-air boundary.
(b)
To determine
The medium in which sound is initially travel to undergo total internal reflection.
(c)
To determine
The reason for the concrete wall is a highly efficient mirror for sound.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
a)If the refractive index of glass is 1.55 and the refractive index of air is 1.0003, what is the critical angle for total internal reflection at the glass/air interface?
b) If the refractive index of glass is 1.55 and the refractive index of the hydrated ion-selective film is 1.34, what is the critical angle for total internal reflection at the glass/film interface?
Sound passes from limestone, where it moves at a speedof 4000 m/s, into another unknown material. The angle of incidence at the interface is 24° and the angle of refraction in the unknown material is 38°. (a) Calculate the speed of sound in this material. (b) Draw pictures of each situation showing the interference between the media, the normal line, the incident, reflected and refracted rays and the angles of these rays to the normal line.
A nearly perfect paraboloidal mirror has a residual RMS surface error of /40, where A is the wavelength
of light. The mirror focuses light from a distant star on axis. What is the resulting wavefront error after
the reflection from the mirror if one neglects the effect of atmospheric seeing? Find Strehl ratio for the
mirror and the amount of energy concentrated in the central maximum of the star image.
Chapter 25 Solutions
Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term
Ch. 25.3 - Prob. 25.1QQCh. 25.4 - If beam is the incoming beam in Active Figure...Ch. 25.4 - Light passes from a material with index of...Ch. 25.4 - Prob. 25.4QQCh. 25.5 - Prob. 25.5QQCh. 25.7 - Prob. 25.6QQCh. 25.7 - Prob. 25.7QQCh. 25 - Prob. 1OQCh. 25 - Prob. 2OQCh. 25 - What happens to a light wave when it travels from...
Ch. 25 - Prob. 4OQCh. 25 - The index of refraction for water is about 43....Ch. 25 - Prob. 6OQCh. 25 - Light traveling in a medium of index of refraction...Ch. 25 - Prob. 8OQCh. 25 - The core of an optical fiber transmits light with...Ch. 25 - Prob. 10OQCh. 25 - A light ray travels from vacuum into a slab of...Ch. 25 - Prob. 12OQCh. 25 - Prob. 13OQCh. 25 - Prob. 14OQCh. 25 - Prob. 1CQCh. 25 - Prob. 2CQCh. 25 - Prob. 3CQCh. 25 - Prob. 4CQCh. 25 - Prob. 5CQCh. 25 - Prob. 6CQCh. 25 - Prob. 7CQCh. 25 - Prob. 8CQCh. 25 - Prob. 9CQCh. 25 - Prob. 10CQCh. 25 - Prob. 11CQCh. 25 - Prob. 12CQCh. 25 - Prob. 1PCh. 25 - Prob. 2PCh. 25 - Prob. 3PCh. 25 - Prob. 4PCh. 25 - Prob. 5PCh. 25 - Prob. 6PCh. 25 - Prob. 7PCh. 25 - An underwater scuba diver sees the Sun at an...Ch. 25 - Prob. 9PCh. 25 - Prob. 10PCh. 25 - A ray of light is incident on a flat surface of a...Ch. 25 - A laser beam is incident at an angle of 30.0 from...Ch. 25 - Prob. 13PCh. 25 - A light ray initially in water enters a...Ch. 25 - Find the speed of light in (a) flint glass, (b)...Ch. 25 - Prob. 16PCh. 25 - Prob. 17PCh. 25 - Prob. 18PCh. 25 - Unpolarized light in vacuum is incident onto a...Ch. 25 - Prob. 20PCh. 25 - Prob. 21PCh. 25 - Prob. 22PCh. 25 - Prob. 23PCh. 25 - Prob. 24PCh. 25 - 14. A ray of light strikes the midpoint of one...Ch. 25 - Prob. 26PCh. 25 - Prob. 27PCh. 25 - Prob. 28PCh. 25 - Prob. 29PCh. 25 - Prob. 30PCh. 25 - Prob. 31PCh. 25 - Around 1965, engineers at the Toro Company...Ch. 25 - Prob. 33PCh. 25 - Prob. 34PCh. 25 - Prob. 35PCh. 25 - Prob. 36PCh. 25 - Prob. 37PCh. 25 - Prob. 38PCh. 25 - Prob. 39PCh. 25 - Prob. 40PCh. 25 - Prob. 41PCh. 25 - Prob. 42PCh. 25 - A 4.00-m-long pole stands vertically in a...Ch. 25 - Prob. 44PCh. 25 - Prob. 45PCh. 25 - Prob. 46PCh. 25 - Prob. 47PCh. 25 - Prob. 48PCh. 25 - When light is incident normally on the interface...Ch. 25 - Prob. 50PCh. 25 - Prob. 51PCh. 25 - Prob. 52PCh. 25 - The light beam in Figure P25.53 strikes surface 2...Ch. 25 - Prob. 54PCh. 25 - Prob. 55PCh. 25 - Prob. 56PCh. 25 - Prob. 57PCh. 25 - Prob. 58PCh. 25 - Prob. 59PCh. 25 - Prob. 60PCh. 25 - Prob. 61PCh. 25 - Prob. 62P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Astronauts placed a mirror on the surface of the Moon to be used for optical measurements of the precise distance to the moon. Visible light is sent from the Earth and is reflected back from the moon. If the mirror has a diameter of 30 cm, roughly how large is the beam of reflected light that reaches Earth? The distance from the Earth to the Moon is 3.8×108 meters. You can assume the light from Earth is a plane wave when it strikes the mirror.arrow_forwardNo glass is perfectly transparent. Mainly because of reflections, about 92% of light passes through an average sheet of clear windowpane. The 8% loss is not noticed through a single sheet, but through several sheets, the loss is apparent. How much light is transmitted by a double-paned window (one with two sheets of glass)?arrow_forwardhigh-frequency sound waves exhibit less diffraction than low-frequency sound waves do. However, even high frequency sound waves exhibit much more diffraction under normal circumstances than do light waves that pass through the same opening. The highest frequency that a healthy ear can typically hear is 2.0 × 104 Hz. Assume that a sound wave with this frequency travels at 344 m/s and passes through a doorway that has a width of 0.95 m. (a) Determine the angle that locates the first minimum to either side of the central maximum in the diffraction pattern for the sound. (b) Suppose that yellow light (wavelength = 567 nm, in vacuum) passes through a doorway and that the first dark fringe in its diffraction pattern is located at the angle determined in part (a). How wide would this hypothetical doorway have to be?arrow_forward
- You shine a monochromatic red light of frequency 4.30 x 10^14 Hz into a flint glass. What are the frequency and wavelength of this light in the material?arrow_forwardA sound wave with a frequency of 15.1 kHz emerges through a circular opening that has a diameter of 0.193 m. Find the diffraction angle e when the sound travels (a) in air and (b) in water. (Note: The speed of sound in air is 343 m/s and the speed of sound in water is 1482 m/s.) (a) Number i Units (b) Number i Units >arrow_forwardAn engineer, investigating the behavior of radio waves, builds a box 7.20 m long. Inside the box at one end is a small radio transmitter that emits radiation with a wavelength of 0.120 m. A receiver is placed at the other end, 7.20 m away. Assume both the transmitter and the receiver are on the floor of the box. The walls and floor of the box interior are treated to minimize reflection of radio waves. The ceiling of the box interior, however, is metal, so the radio waves can reflect off of it almost perfectly. The radio waves can take two paths from the transmitter to the receiver: a straight-line path, and a path that reflects off the ceiling of the box interior. Note that there is a phase shift when the waves reflect off the ceiling. (a) What is the minimum (nonzero) height of the box ceiling (in m) that could produce destructive interference between the direct and reflected waves at the receiver's location? (b) What If? Some modern Wi-Fi antennas emit frequencies in the 5 GHz band.…arrow_forward
- You may have noticed that the eyes of cats appear to glow green in low light. This effect is due to the reflection of light by the tapetum lucidum, a highly reflective membrane just behind the retina of the eye. Light that has passed through the retina without hitting photoreceptors is reflected back to the retina, thus enabling the animal to see much better than humans in low light. Suppose the eye of a cat is 1.34 cm in diameter. Assume that the light enters the eye traveling parallel to the principal axis of the lens. If some of the light reflected off the tapetum lucidum escapes being absorbed by the retina, what is the horizontal distance ?from the retina to the point where the light will be focused? Neglect any effects due to the liquid in the eye. x = ? cm The refractive index of the liquid in the eye is about 1.4. How does this affect the location of the image relative to where it would be if the eye were filled with air?arrow_forwardLight enters from air into glass (dark blue) with an index of refraction of ng = 1.774 , which is surrounded by a plastic (light blue) with np = 1.427. What is the critical angle (in degrees) for total internal reflection at the glass - plastic interface?arrow_forwardThe two speakers are placed 40.0 cm apart. A single oscillator makes the speakers vibrate in phase at a frequency of 1.98 kHz. At what angles, measured from the perpendicular bisector of the line joining the speakers, would a distant observer hear maximum sound intensity? Minimum sound intensity? (Take the speed of sound to be 340 m/s. Enter the magnitude of the angle only.)maximum intensities: (List smallest magnitude angle first.)?1max = ?2max = ?3max = minimum intensities: (List smallest magnitude angle first.)?1min = ?2min =arrow_forward
- Assume the indices of refraction for air, water, and glass are 1.00, 1.33, and 1.50, respectively. When illuminated from above, a ray reflected from the air-water interface undergoes a phase shift of φ 1 = π, and a ray reflected at the water-glass interface also undergoes a phase shift of π. Thus, the two rays are unshifted in phase relative to each other due to reflection. For constructive interference, the path difference 2t must equal an integer number (m) of wavelengths in water. a. Derive the equation in terms of λ based on the situation above. b. If this m-value is an integer the wavelength undergoes constructive interference upon reflection in terms of λ, compute for the wavelengths for the following thickness: t= 2 x 10 5 m at m 700 nm and m 400 nmarrow_forwardTwo in-phase sources of waves are separated by a distance of 4.00 m.These sources produce identical waves that have a wavelength of 5.00 m.On the line between them, there are two places at which the same type ofinterference occurs. (a) Is it constructive or destructive interference, and(b) where are the places located?arrow_forwardThe two speakers are placed 39.0 cm apart. A single oscillator makes the speakers vibrate in phase at a frequency of 2.01 kHz. At what angles, measured from the perpendicular bisector of the line joining the speakers, would a distant observer hear maximum sound intensity? Minimum sound intensity? (Take the speed of sound to be 340 m/s. Enter the magnitude of the angle only.) maximum intensities: (List smallest magnitude angle first.) ?1max = ?2max = ?3max = minimum intensities: (List smallest magnitude angle first.) minimum intensities: (List smallest magnitude angle first.) ?1min = ?2min =arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Laws of Refraction of Light | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=4l2thi5_84o;License: Standard YouTube License, CC-BY