Physics for Scientists and Engineers, Volume 2
10th Edition
ISBN: 9781337553582
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 25, Problem 25P
Determine (a) the capacitance and (b) the maximum potential difference that can be applied to a Teflon-filled parallel-plate capacitor haring a plate area of 1.75 cm2 and a plate separation of 0.040 0 mm.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
m
C
A block of mass m slides down a ramp of height hand
collides with an identical block that is initially at rest.
The two blocks stick together and travel around a loop of
radius R without losing contact with the track. Point A is
at the top of the loop, point B is at the end of a horizon-
tal diameter, and point C is at the bottom of the loop, as
shown in the figure above. Assume that friction between
the track and blocks is negligible.
(a) The dots below represent the two connected
blocks at points A, B, and C. Draw free-body dia-
grams showing and labeling the forces (not com
ponents) exerted on the blocks at each position.
Draw the relative lengths of all vectors to reflect
the relative magnitude of the forces.
Point A
Point B
Point C
(b) For each of the following, derive an expression in
terms of m, h, R, and fundamental constants.
i. The speed of moving block at the bottom of
the ramp, just before it contacts the stationary
block
ii. The speed of the two blocks immediately…
The velocity of an elevator is given by the graph shown.
Assume the positive direction is upward.
Velocity (m/s)
3.0
2.5
2.0
1.5
1.0
0.5
0
0
5.0
10
15
20
25
Time (s)
(a) Briefly describe the motion of the elevator.
Justify your description with reference to the
graph.
(b) Assume the elevator starts from an initial position
of y = 0 at t=0. Deriving any numerical values
you
need from the graph:
i. Write an equation for the position as a
function of time for the elevator from
t=0 to t = 3.0 seconds.
ii. Write an equation for the position as a
function of time for the elevator from t = 3.0
seconds to t = 19 seconds.
(c) A student of weight mg gets on the elevator
and rides the elevator during the time interval
shown in the graph. Consider the force of con-
tact, F, between the floor and the student. How
Justify your answer with reference to the graph
does F compare to mg at the following times?
and your equations above.
i. = 1.0 s
ii. = 10.0 s
Students are asked to use circular motion to measure the
coefficient of static friction between two materials. They
have a round turntable with a surface made from one of
the materials, for which they can vary the speed of rotation.
They also have a small block of mass m made from the sec-
ond material. A rough sketch of the apparatus is shown in
the figure below. Additionally they have equipment normally
found in a physics classroom.
Axis
m
(a) Briefly describe a procedure that would allow you
to use this apparatus to calculate the coefficient of
static friction, u.
(b) Based on your procedure, determine how to
analyze the data collected to calculate the
coefficient of friction.
(c) One group of students collects the following
data.
r (m)
fm (rev/s)
0.050
1.30
0.10
0.88
0.15
0.74
0.20
0.61
0.25
0.58
i. Use the empty spaces in the table as needed to
calculate quantities that would allow you to
use the slope of a line graph to calculate the
coefficient of friction, providing labels with…
Chapter 25 Solutions
Physics for Scientists and Engineers, Volume 2
Ch. 25.1 - A capacitor stores charge Q at a potential...Ch. 25.2 - Many computer keyboard buttons are constructed of...Ch. 25.3 - Two capacitors are identical. They can be...Ch. 25.4 - You have three capacitors and a battery. In which...Ch. 25.5 - If you have ever tried to hang a picture or a...Ch. 25 - (a) When a battery is connected to the plates of a...Ch. 25 - Two conductors having net charges of +10.0 C and...Ch. 25 - When a potential difference of 150 V is applied to...Ch. 25 - An air-filled parallel-plate capacitor has plates...Ch. 25 - A variable air capacitor used in a radio tuning...
Ch. 25 - Review. A small object of mass m carries a charge...Ch. 25 - Find the equivalent capacitance of a 4.20-F...Ch. 25 - Why is the following situation impossible? A...Ch. 25 - A group of identical capacitors is connected first...Ch. 25 - Three capacitors are connected to a battery as...Ch. 25 - Four capacitors are connected as shown in Figure...Ch. 25 - (a) Find the equivalent capacitance between points...Ch. 25 - Find the equivalent capacitance between points a...Ch. 25 - You are working at an electronics fabrication...Ch. 25 - Two capacitors give an equivalent capacitance of...Ch. 25 - Two capacitors give an equivalent capacitance of...Ch. 25 - A 3.00-F capacitor is connected to a 12.0-V...Ch. 25 - Two capacitors, C1 = 18.0 F and C2 = 36.0 F, are...Ch. 25 - Two identical parallel-plate capacitors, each with...Ch. 25 - Two identical parallel-plate capacitors, each with...Ch. 25 - Two capacitors, C1 = 25.0 F and C2 = 5.00 F, are...Ch. 25 - A parallel-plate capacitor has a charge Q and...Ch. 25 - Consider two conducting spheres with radii R1 and...Ch. 25 - A supermarket sells rolls of aluminum foil,...Ch. 25 - Determine (a) the capacitance and (b) the maximum...Ch. 25 - The voltage across an air-filled parallel-plate...Ch. 25 - A commercial capacitor is to be constructed as...Ch. 25 - Each capacitor in the combination shown in Figure...Ch. 25 - A 2.00-nF parallel-plate capacitor is charged to...Ch. 25 - An infinite line of positive charge lies along the...Ch. 25 - A small object with electric dipole moment p is...Ch. 25 - The general form of Gausss law describes how a...Ch. 25 - You are working in a laboratory, using very...Ch. 25 - Four parallel metal plates P1, P2, P3, and P4,...Ch. 25 - A uniform electric field E = 3 000 V/m exists...Ch. 25 - Two large, parallel metal plates, each of area A,...Ch. 25 - A parallel-plate capacitor with vacuum between its...Ch. 25 - Why is the following situation impossible? A...Ch. 25 - Two square plates of sides are placed parallel to...Ch. 25 - (a) Two spheres have radii a and b, and their...Ch. 25 - Assume that the internal diameter of the...Ch. 25 - A parallel-plate capacitor of plate separation d...Ch. 25 - To repair a power supply for a stereo amplifier,...Ch. 25 - Example 25.1 explored a cylindrical capacitor of...Ch. 25 - You are part of a team working in a machine parts...Ch. 25 - Consider two long, parallel, and oppositely...Ch. 25 - Some physical systems possessing capacitance...Ch. 25 - A parallel-plate capacitor with plates of area LW...Ch. 25 - A capacitor is constructed from two square,...Ch. 25 - This problem is a continuation of Problem 45. You...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In general it is best to conceptualize vectors as arrows in space, and then to make calculations with them using their components. (You must first specify a coordinate system in order to find the components of each arrow.) This problem gives you some practice with the components. Let vectors A = (1,0, -3), B = (-2, 5, 1), and C = (3,1,1). Calculate the following, and express your answers as ordered triplets of values separated by commas.arrow_forwardIn general it is best to conceptualize vectors as arrows in space, and then to make calculations with them using their components. (You must first specify a coordinate system in order to find the components of each arrow.) This problem gives you some practice with the components. Let vectors A = (1,0, −3), B = (-2, 5, 1), and C = (3,1,1). Calculate the following, and express your answers as ordered triplets of values separated by commas.arrow_forwardOnly Part C.) is necessaryarrow_forward
- Only Part B.) is necessaryarrow_forwardA (3.60 m) 30.0°- 70.0° x B (2.40 m)arrow_forwardIn general it is best to conceptualize vectors as arrows in space, and then to make calculations with them using their components. (You must first specify a coordinate system in order to find the components of each arrow.) This problem gives you some practice with the components. Let vectors A = (1,0, -3), B = (-2, 5, 1), and C = (3,1,1). Calculate the following, and express your answers as ordered triplets of values separated by commas.arrow_forward
- fine the magnitude of the vector product express in sq meters what direction is the vector product in -z or +zarrow_forward4) Three point charges of magnitude Q1 = +2.0 μC, Q2 = +3.0 μС, Q3 = = +4.0 μС are located at the corners of a triangle as shown in the figure below. Assume d = 20 cm. (a) Find the resultant force vector acting on Q3. (b) Find the magnitude and direction of the force. d Q3 60° d Q1 60° 60° Q2 darrow_forwardThree point charges of magnitudes Q₁ = +6.0 μС, Q₂ = −7.0 μС, Qз = −13.0 μC are placed on the x-axis at x = 0 cm, x = 40 cm, and x = 120 cm, respectively. What is the force on the Q3 due to the other two charges?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics Capacitor & Capacitance part 7 (Parallel Plate capacitor) CBSE class 12; Author: LearnoHub - Class 11, 12;https://www.youtube.com/watch?v=JoW6UstbZ7Y;License: Standard YouTube License, CC-BY