
(a)
Interpretation:
How to synthesize a given compound from
Concept introduction:

Answer to Problem 25.76P
The synthesis of a given compound from
Explanation of Solution
The given synthesis is
The direct conversion is not known. Therefore, the retrosynthesis analysis is done to know the possible route for the synthesis. It is noticed that the cyclopentyl ring and methyl group are trans to each other, thus the alkene results from
Thus the forward reaction is carried out as below:
Since the cyclopentyl ring and methyl group are trans to each other, the alkene results from
It is shown how to synthesize a given compound from
(b)
Interpretation:
It is to be shown how to synthesize a given compound from
Concept introduction:
Alkynes can be converted to the corresponding alkene either by the treatment of alkali metal (e.g. Na, K) in ammonia or by catalytic hydrogenation. The advantage of the catalytic hydrogenation is to form the cis-alkene by the syn-addition of molecular hydrogen,

Answer to Problem 25.76P
The synthesis of the given compound from
Explanation of Solution
The given synthesis is
The direct conversion is not known. Therefore, the retrosynthesis analysis is done to know the possible route for the synthesis. It is noticed that the cyclopentyl ring and methyl group are cis to each other, thus the alkene results from
Thus the forward reaction is carried out as below:
Since the cyclopentyl ring and methyl group are cis to each other, the alkene results from
It is shown how to synthesize a given compound from
(c)
Interpretation:
It is to be shown how to synthesize a given compound from
Concept introduction:
Alkynes can be converted to the corresponding alkene either by the treatment of alkali metal (e.g. Na, K) in ammonia called a dissolving metal reduction or by catalytic hydrogenation. The advantage of the catalytic hydrogenation is to form the cis-alkene by the syn-addition of molecular hydrogen,

Answer to Problem 25.76P
The synthesis of the given compound from
Explanation of Solution
The given synthesis is
The direct conversion is not known. Therefore, the retrosynthesis analysis is done to know the possible route for the synthesis.
The forward reaction is carried out as:
In the first step the reduction of the alkyne is done to the corresponding alkane by the catalytic hydrogenation as follows:
Finally, the proton of the tertiary carbon is replaced by bromine atom by the treatment of molecular bromine in the presence of light. The tertiary carbon is brominated via a free radical mechanism to form the required product.
It is to be shown how to synthesize a given compound from
(d)
Interpretation:
How to synthesize a given compound from
Concept introduction:
Alkynes can be converted to the corresponding alkene either by the treatment of alkali metal (e.g. Na, K) in ammonia called a dissolving metal reduction or by catalytic hydrogenation. The advantage of the catalytic hydrogenation is to form the cis-alkene by the syn-addition of molecular hydrogen,

Answer to Problem 25.76P
The synthesis of the given compound from
Explanation of Solution
The given synthesis is
The direct conversion is not known. Therefore, the retrosynthesis analysis is done to know the possible route for the synthesis.
In the first step the reduction of the alkyne is done to the corresponding alkene by the catalytic hydrogenation as follows:
Finally, the addition of the molecular bromine is done to form the final, required product.
It is shown how to synthesize a given compound from
(e)
Interpretation:
How to synthesize a given compound from
Concept introduction:
Alkynes can be converted to the corresponding alkene either by the treatment of alkali metal (e.g. Na, K) in ammonia called a dissolving metal reduction or by catalytic hydrogenation. The advantage of the catalytic hydrogenation is to form the cis-alkene by the syn-addition of molecular hydrogen,

Answer to Problem 25.76P
The synthesis of the given compound from
Explanation of Solution
The given synthesis is
The direct conversion is not known. Therefore, the retrosynthesis analysis is done to know the possible route for the synthesis.
In the first step, the reduction of the alkyne is done to the corresponding alkene by the catalytic hydrogenation as follows:
Finally, a Diels-Alder reaction is carried out to produce the required product.
It is shown how to synthesize a given compound from
(f)
Interpretation:
It is to be shown how to synthesize a given compound from
Concept introduction:
Alkynes can be converted to the corresponding alkene either by the treatment of alkali metal (e.g. Na, K) in ammonia called a dissolving metal reduction or by catalytic hydrogenation. The advantage of the catalytic hydrogenation is to form the cis-alkene by the syn-addition of molecular hydrogen,

Answer to Problem 25.76P
The synthesis of the given compound from
Explanation of Solution
The given synthesis is
The direct conversion is not known. Therefore, the retrosynthesis analysis is done to know the possible route for the synthesis.
In the first step the reduction of the alkyne is done to the corresponding alkene by the catalytic hydrogenation as follows:
Finally, a Diels-Alder reaction is carried out to produce the required product.
It is shown how to synthesize a given compound from
Want to see more full solutions like this?
Chapter 25 Solutions
Organic Chemistry: Principles And Mechanisms
- Draw the major product of this reaction. Ignore inorganic byproducts. Problem 17 of 35 1. CH3CH2Li O H 2. Neutralizing work-up @ Atoms, Bonds and Rings Draw or tap a new boarrow_forwardWill this convert the C=O to an alcohol? Or does its participation in the carboxy group prevent that from happening?arrow_forwardI have some reactions here for which I need to predict the products. Can you help me solve them and rewrite the equations, as well as identify the type of reaction? Please explain it to me.I have some reactions here for which I need to predict the products. Can you help me solve them and rewrite the equations, as well as identify the type of reaction? Please explain it to marrow_forward
- Help me i dont know how to do itarrow_forwardCan you explain how to draw a molecular orbital diagram for the given molecule? It is quite difficult to understand. Additionally, could you provide a clearer illustration? Furthermore, please explain how to draw molecular orbital diagrams for any other given molecule or compound as well.arrow_forwardCurved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electron-pushing arrows for the following reaction or mechanistic step(s). Be sure to account for all bond-breaking and bond-making steps. Prob 10: Select to Add Arrows THEarrow_forward
- Curved arrows are used to illustrate the flow of electrons using the provided starting and product structures draw the curved electron pushing arrows for the following reaction or mechanistic steps Ether(solvent)arrow_forwardThis deals with synthetic organic chemistry. Please fill in the blanks appropriately.arrow_forwardUse the References to access important values if needed for this question. What is the IUPAC name of each of the the following? 0 CH3CHCNH₂ CH3 CH3CHCNHCH2CH3 CH3arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





