Concept explainers
Review. From a large distance away, a particle of mass 2.00 g and charge 15.0 μC is fired at 21.0î m/s straight toward a second particle, originally stationary but free to move, with mass 5.00 g and charge 8.50 μC. Both particles are constrained to move only along the x axis.
- (a) At the instant of' closest approach, both particles will be moving at the same velocity. F'ind this velocity.
- (b) Find the distance of closest approach. After the interaction, the particles will move far apart again. At this time, find the velocity of (c) the 2.00-g particle and (d) the 5.00-g particle.
(a)
The velocity at the instant when the both particle moves with same velocity.
Answer to Problem 25.55AP
The velocity at the instant of closest approach when the both particle moves with same velocity is
Explanation of Solution
Given info: The mass of first particle is
The momentum is conserved of an isolated system.
Here,
Substitute
Substitute
Conclusion:
Therefore, the velocity at the instant of closest approach when the both particle moves with same velocity is
(b)
The closet distance.
Answer to Problem 25.55AP
The closet distance is
Explanation of Solution
Given info: The mass of first particle is
From part (a) the value of
Write the expression for initial the kinetic energy of first particle.
Here,
Write the expression for final the kinetic energy of first particle.
Here,
Write the expression for initial the kinetic energy of second particle.
Here,
Write the expression for final the kinetic energy of second particle.
Here,
Total initial kinetic energy is given by,
Substitute
Substitute
Total final kinetic energy is given by,
Substitute
The initial electric potential energy is
Here,
The final electric potential energy is expressed as,
Here,
The energy is conserved within the isolated system.
Substitute
Substitute
Substitute
Conclusion:
Therefore, the closet distance is
(c)
The velocity of the particle of mass
Answer to Problem 25.55AP
The velocity of the particle of mass
Explanation of Solution
Given info: The mass of first particle is
The expression for the relative velocity is,
Substitute
The overall elastic collision is described by the conservation of the momentum.
Substitute
Substitute
Substitute
Conclusion:
Therefore, the velocity of the particle of mass
(d)
The velocity of the particle of mass
Answer to Problem 25.55AP
The velocity of the particle of mass
Explanation of Solution
From part (c) the value of
From part (c) the expression for
Substitute
Substitute
Conclusion:
Therefore, the velocity of the particle of mass
Want to see more full solutions like this?
Chapter 25 Solutions
PHYSICS 1250 PACKAGE >CI<
- The velocity of an elevator is given by the graph shown. Assume the positive direction is upward. Velocity (m/s) 3.0 2.5 2.0 1.5 1.0 0.5 0 0 5.0 10 15 20 25 Time (s) (a) Briefly describe the motion of the elevator. Justify your description with reference to the graph. (b) Assume the elevator starts from an initial position of y = 0 at t=0. Deriving any numerical values you need from the graph: i. Write an equation for the position as a function of time for the elevator from t=0 to t = 3.0 seconds. ii. Write an equation for the position as a function of time for the elevator from t = 3.0 seconds to t = 19 seconds. (c) A student of weight mg gets on the elevator and rides the elevator during the time interval shown in the graph. Consider the force of con- tact, F, between the floor and the student. How Justify your answer with reference to the graph does F compare to mg at the following times? and your equations above. i. = 1.0 s ii. = 10.0 sarrow_forwardStudents are asked to use circular motion to measure the coefficient of static friction between two materials. They have a round turntable with a surface made from one of the materials, for which they can vary the speed of rotation. They also have a small block of mass m made from the sec- ond material. A rough sketch of the apparatus is shown in the figure below. Additionally they have equipment normally found in a physics classroom. Axis m (a) Briefly describe a procedure that would allow you to use this apparatus to calculate the coefficient of static friction, u. (b) Based on your procedure, determine how to analyze the data collected to calculate the coefficient of friction. (c) One group of students collects the following data. r (m) fm (rev/s) 0.050 1.30 0.10 0.88 0.15 0.74 0.20 0.61 0.25 0.58 i. Use the empty spaces in the table as needed to calculate quantities that would allow you to use the slope of a line graph to calculate the coefficient of friction, providing labels with…arrow_forwardPART Aarrow_forward
- answer both questionarrow_forwardOnly part A.) of the questionarrow_forwardIn general it is best to conceptualize vectors as arrows in space, and then to make calculations with them using their components. (You must first specify a coordinate system in order to find the components of each arrow.) This problem gives you some practice with the components. Let vectors A = (1,0, -3), B = (-2, 5, 1), and C = (3,1,1). Calculate the following, and express your answers as ordered triplets of values separated by commas.arrow_forward
- In general it is best to conceptualize vectors as arrows in space, and then to make calculations with them using their components. (You must first specify a coordinate system in order to find the components of each arrow.) This problem gives you some practice with the components. Let vectors A = (1,0, −3), B = (-2, 5, 1), and C = (3,1,1). Calculate the following, and express your answers as ordered triplets of values separated by commas.arrow_forwardOnly Part C.) is necessaryarrow_forwardOnly Part B.) is necessaryarrow_forward
- A (3.60 m) 30.0°- 70.0° x B (2.40 m)arrow_forwardIn general it is best to conceptualize vectors as arrows in space, and then to make calculations with them using their components. (You must first specify a coordinate system in order to find the components of each arrow.) This problem gives you some practice with the components. Let vectors A = (1,0, -3), B = (-2, 5, 1), and C = (3,1,1). Calculate the following, and express your answers as ordered triplets of values separated by commas.arrow_forwardfine the magnitude of the vector product express in sq meters what direction is the vector product in -z or +zarrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning