
Concept explainers
Solve the following initial value problem over the interval from
(a) Analytically.
(b) Euler's method with
(c) Midpoint method with
(d) Fourth-order RK method with
(a)

To calculate: The solution of the initial value problem
Answer to Problem 1P
Solution:
The solution to the initial value problem is
Explanation of Solution
Given Information:
The initial value problem
Formula used:
Tosolve an initial value problem of the form
Calculation:
Rewrite the provided differential equation as,
Integrate both sides to get,
Now use the initial condition
Hence, the analytical solution of the initial value problem is
(b)

To calculate: The solution of the initial value problem
Answer to Problem 1P
Solution:
For
t | y | |
0 | 1 | |
0.5 | 0.45 | |
1 | 0.25875 | |
1.5 | 0.245813 | 0.282684 |
2 | 0.387155 | 1.122749 |
And, for
t | y | |
0 | 1 | |
0.25 | 0.725 | |
0.5 | 0.536593 | |
0.75 | 0.422861 | |
1 | 0.36603 | |
1.25 | 0.356879 | 0.165057 |
1.5 | 0.398143 | 0.457865 |
1.75 | 0.51261 | 1.005997 |
2 | 0.764109 | 2.215916 |
Explanation of Solution
Given Information:
The initial value problem
Formula used:
Solve an initial value problem of the form
Calculation:
From the initial condition
Let
Proceed further and use the following MATLAB code to implement Euler’s method and solve the differential equation.
Execute the above code to obtain the solutions for
t | y | |
0 | 1 | |
0.5 | 0.45 | |
1 | 0.25875 | |
1.5 | 0.245813 | 0.282684 |
2 | 0.387155 | 1.122749 |
Now, the similar procedure can be followedfor the step size
The results thus obtained are tabulated as,
t | y | |
0 | 1 | |
0.25 | 0.725 | |
0.5 | 0.536593 | |
0.75 | 0.422861 | |
1 | 0.36603 | |
1.25 | 0.356879 | 0.165057 |
1.5 | 0.398143 | 0.457865 |
1.75 | 0.51261 | 1.005997 |
2 | 0.764109 | 2.215916 |
The results for the two-step-sizes are plotted along with the analytical solution
It is inferred that the smaller step-size would give a better approximation to the solution.
(c)

To calculate: The solution of the initial value problem
Answer to Problem 1P
Solution:
The solutions are tabulated as,
t | y | |
0 | 1 | |
0.5 | 0.623906 | |
1 | 0.491862 | |
1.5 | 0.602762 | 0.693176 |
2 | 1.364267 | 3.956374 |
Explanation of Solution
Given Information:
The initial value problem
Formula used:
Solve an initial value problem of the form
Here,
Calculation:
From the initial condition
Let
Now,
Proceed further and use the following MATLAB code to implement mid-point iterative scheme and solve the differential equation.
Execute the above code to obtain the solutions tabulated as,
t | Y | |
0 | 1 | |
0.5 | 0.623906 | |
1 | 0.491862 | |
1.5 | 0.602762 | 0.693176 |
2 | 1.364267 | 3.956374 |
The results for the are plotted along with the analytical solution
Thus, it is inferred that the mid-point method gives a good approximation to the solution.
(d)

To calculate: The solution of the initial value problem
Answer to Problem 1P
Solution:
The solutions are tabulated as,
t | y | ||||
0 | 1 | ||||
0.5 | 0.6016 | ||||
1 | 0.4645 | 0.2095 | 0.2391 | 0.6717 | |
1.5 | 0.5914 | 0.6801 | 1.4953 | 1.8937 | 4.4609 |
2 | 1.5845 | 4.5949 | 10.8302 | 17.0071 | 51.9532 |
Explanation of Solution
Given Information:
The initial value problem
Formula used:
Solve an initial value problem of the form
In the above expression,
Calculation:
From the initial condition
Let
And,
And,
Therefore,
Proceed further and use the following MATLAB code to implement RK method of order four, solve the differential equation.
In an another .m file, define the equation as,
Execute the above code to obtain the solutions tabulated as,
t | y | ||||
0 | 1 | ||||
0.5 | 0.6016 | ||||
1 | 0.4645 | 0.2095 | 0.2391 | 0.6717 | |
1.5 | 0.5914 | 0.6801 | 1.4953 | 1.8937 | 4.4609 |
2 | 1.5845 | 4.5949 | 10.8302 | 17.0071 | 51.9532 |
The results for the are plotted along with the analytical solution
Hence, it is inferred that the RK method of order four gives the best approximation to the solution.
Want to see more full solutions like this?
Chapter 25 Solutions
EBK NUMERICAL METHODS FOR ENGINEERS
- Golden Ratio search Method f(x) = 2x^3 - 3x^2 - 12x + 1 Golden ratio search rules 1.If f(x) < f(x2): 1. Eliminate all x values less than x2 2. X2 becomes the new a 3. x, becomes the new x2 4. no change in b If f(x) > f(x2): 1. Eliminate all x values greater than x 2. x, becomes the new b 3. x2 becomes the new x 4. no change in aquesion=Narrow the interval in which the minimizer of the function f is located using the golden search method, starting with the initial interval (0,6], until its width is less than 2. Then, accept the midpoint of this interval as an approximate value of the minimizer of the function fand determine it. (ф=0.62)According to the question above, fill in the table below using the algorithm until the appropriate place.please write every step by step in a verry comprehensive wayarrow_forwardIn preparing for the upcoming holiday season, Fresh Toy Company (FTC) designed a new doll called The Dougie that teaches children how to dance. The fixed cost to produce the doll is $100,000. The variable cost, which includes material, labor, and shipping costs, is $31 per doll. During the holiday selling season, FTC will sell the dolls for $39 each. If FTC overproduces the dolls, the excess dolls will be sold in January through a distributor who has agreed to pay FTC $10 per doll. Demand for new toys during the holiday selling season is extremely uncertain. Forecasts are for expected sales of 60,000 dolls with a standard deviation of 15,000. The normal probability distribution is assumed to be a good description of the demand. FTC has tentatively decided to produce 60,000 units (the same as average demand), but it wants to conduct an analysis regarding this production quantity before finalizing the decision. (a) Determine the equation for computing FTC's profit for given values of the…arrow_forwardFor all integers a and b, (a + b)^4 ≡ a^4 + b^4 (mod 4).arrow_forward
- Let Χ be a real-valued character (mod k). Let k S = Σnx(n). n=1 If (a, k) = 1, ax(a)S = S (mod k). (iii) Write k = 2ºq where q is odd. Show that there is an integer a with (a, k) = 1 such that a = 3 (mod 2ª) and a = 2 (mod q). Deduce that 12S = 0 (mod k).arrow_forwardProve that (1) Σσς (α) μ(η/α) = n d/n (ii) Σσς(d) = η Σσο(α)/d d❘n d❘n (iii) σ (d) σ (n/d) = Σ d³oo(d) σo(n/d). d|n dnarrow_forwardhow to do part b,carrow_forward
- If p = 5 (mod 8), where p is prime, show that p|2 (P-1)/2 + 1. State and prove the corresponding result when p = 7 (mod 8). Deduce that 250 + 1 and 251 1 are composite. -arrow_forwardWhy the character no change for my remark?arrow_forwardIn preparing for the upcoming holiday season, Fresh Toy Company (FTC) designed a new doll called The Dougie that teaches children how to dance. The fixed cost to produce the doll is $100,000. The variable cost, which includes material, labor, and shipping costs, is $31 per doll. During the holiday selling season, FTC will sell the dolls for $39 each. If FTC overproduces the dolls, the excess dolls will be sold in January through a distributor who has agreed to pay FTC $10 per doll. Demand for new toys during the holiday selling season is extremely uncertain. Forecasts are for expected sales of 60,000 dolls with a standard deviation of 15,000. The normal probability distribution is assumed to be a good description of the demand. FTC has tentatively decided to produce 60,000 units (the same as average demand), but it wants to conduct an analysis regarding this production quantity before finalizing the decision. (a) Determine the equation for computing FTC's profit for given values of the…arrow_forward
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage