Concept explainers
Suppose that a certain population obeys the logistic equation
If
If
Want to see the full answer?
Check out a sample textbook solutionChapter 2 Solutions
DIFFERENTIAL EQUATIONS-NEXTGEN WILEYPLUS
Additional Math Textbook Solutions
Basic Business Statistics, Student Value Edition
Graphical Approach To College Algebra
Introductory Statistics
Elementary Statistics Using The Ti-83/84 Plus Calculator, Books A La Carte Edition (5th Edition)
Calculus: Early Transcendentals (2nd Edition)
Pre-Algebra Student Edition
- Recall that the general form of a logistic equation for a population is given by P(t)=c1+aebt , such that the initial population at time t=0 is P(0)=P0. Show algebraically that cP(t)P(t)=cP0P0ebt .arrow_forwardThe formula for the amount A in an investmentaccount with a nominal interest rate r at any timet is given by A(t)=a(e)rt, where a is the amount ofprincipal initially deposited into an account thatcompounds continuously. Prove that the percentageof interest earned to principal at any time t can becalculated with the formula I(t)=ert1.arrow_forwardAssume there is a certain population of fish in a pond whose growth is described by the logistic equation. It is estimated that the carrying capacity for the pond is 1000 fish. Absent constraints, the population would grow by 120% per year.If the starting population is given by p0=200, then after one breeding season the population of the pond is given byp1 = After two breeding seasons the population of the pond is given byp2 =arrow_forward
- For the discrete logistic equation Xt + 1 = cxt(1 xt) and the given values of xo and c, calculate xt to four decimal places for t = 1, 2, 10. Xo = t O 1 2 3 4 5 6 7 8 9 10 0.4, c = 1.5 Xt 0.4000arrow_forwardThe population of mosquitoes in a certain area increases at a rate proportional to the current population, and in the absence of other factors, the population doubles each week. There are 400,000 mosquitoes in the area initially, and predators (birds, bats, and so forth) eat 50,000 mosquitoes/day. Determine the population of mosquitoes in the area at any time. (Note that the variable t represents days.)arrow_forwardThe size of a bacterial culture grows in such a way that after t minutes, there are P(t) = 20.00Ł A bacteria present, for some constant A. After 10 minutes, there are 10,000 bacteria. What is A?arrow_forward
- h = log(x² + y² + z²), Find hx when x = 1 ; y = xsinx ; z = xcosx a. 0.89 b. 0.86 C. 0.88 d. 0.87arrow_forwardFind a so that the graph of y = logax passes through the point (e , 2).arrow_forwardInitially, 10 grams of a radioactive substance were found in a sample. It was observed that 20% of the initial amount of radioactive substance disintegrated after 2 hours (that is, 8 grams remain after 2 hours). Find the half-life of the radioactive substance (that is, the time it takes for one- half of the initial amount to disintegrate) if the rate of disintegration of the radioactive substance is In z 1 2 0.7 proportional to the amount of the substance present at time t. You must begin your solution process by 3 considering the proportional relationship presented below. Use the natural logarithm table to the right 1.1 to provide an approximate answer. Your work must support your answer. 4 1.4 1.6 dA a A 6 1.8 dt 1.9 2.1 9 2.2 10 2.3 7,arrow_forward
- One method of slowing the growth of an insect population without using pesticides is to introduce into the population a number of sterile males that mate with fertile females but produce no offspring. Let P represent the number of female insects in a population and S the number of sterile males introduced each generation. Let r be the per capita rate of production of females by females, provided that their chosen mate is not sterile. Then the female population is related to time t by t = ∫(P + S)dP/P[(r-1)P - S] Suppose an insect population with 10,000 females grows at a rate of r = 1.2 and 900 sterile males are added initially. Evaluate the integral to give an equation relating the female population to time. (Note that the resulting equation cannot be solved explicitly for P.)arrow_forwardSolve part d pleasearrow_forward
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
- Trigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage Learning