
Concept explainers
(a)
Interpretation:
Given reaction has to be completed representing the mass number and
Concept Introduction: In this radioactive decay process the unstable isotopes loses their energy by emitting radiation. It is converted to stable isotopes. The emitting radiations are positron emission, gamma emission, beta emission and electron capture.
Mass number is the sum of neutron and protons.
Atomic number is the number of protons.
In alpha decay, there will be lose of
In beta decay, there will be a lose of electron from nucleus (neutron turns into proton): there will be no change in mass number and atomic number increases by one.
(a)

Answer to Problem 11PS
Explanation of Solution
The radioactive isotope of iron-54 when irradiated with alpha particle forms
(b)
Interpretation:
Given reaction has to be completed representing the mass number and atomic number.
Introduction: In this radioactive decay process the unstable isotopes loses their energy by emitting radiation. It is converted to stable isotopes. The emitting radiations are positron emission, gamma emission, beta emission and electron capture.
Mass number is the sum of neutron and protons.
Atomic number is the number of protons.
In alpha decay, there will be lose of
In beta decay, there will be a lose of electron from nucleus (neutron turns into proton): there will be no change in mass number and atomic number increases by one.
(b)

Answer to Problem 11PS
Explanation of Solution
The radioactive isotope of Aluminium-27 when irradiated with alpha particle forms
(c)
Interpretation:
Given reaction has to be completed representing the mass number and atomic number.
Introduction: In this radioactive decay process the unstable isotopes loses their energy by emitting radiation. It is converted to stable isotopes. The emitting radiations are positron emission, gamma emission, beta emission and electron capture.
Mass number is the sum of neutron and protons.
Atomic number is the number of protons.
In alpha decay, there will be lose of
In beta decay, there will be a lose of electron from nucleus (neutron turns into proton): there will be no change in mass number and atomic number increases by one.
(c)

Answer to Problem 11PS
Explanation of Solution
The radioactive isotope of Sulphur-32 is irradiated with neutron forms
(d)
Interpretation:
Given reaction has to be completed representing the mass number and atomic number.
Introduction: In this radioactive decay process the unstable isotopes loses their energy by emitting radiation. It is converted to stable isotopes. The emitting radiations are positron emission, gamma emission, beta emission and electron capture.
Mass number is the sum of neutron and protons.
Atomic number is the number of protons.
In alpha decay, there will be lose of
In beta decay, there will be a lose of electron from nucleus (neutron turns into proton): there will be no change in mass number and atomic number increases by one.
(d)

Answer to Problem 11PS
Explanation of Solution
The radioactive isotope of
(e)
Interpretation:
Given reaction has to be completed representing the mass number and atomic number.
Introduction: In this radioactive decay process the unstable isotopes loses their energy by emitting radiation. It is converted to stable isotopes. The emitting radiations are positron emission, gamma emission, beta emission and electron capture.
Mass number is the sum of neutron and protons.
Atomic number is the number of protons.
In alpha decay, there will be lose of
In beta decay, there will be a lose of electron from nucleus (neutron turns into proton): there will be no change in mass number and atomic number increases by one.
(e)

Answer to Problem 11PS
Explanation of Solution
The radioactive isotope of
(f)
Interpretation:
Given reaction has to be completed representing the mass number and atomic number.
Introduction: In this radioactive decay process the unstable isotopes loses their energy by emitting radiation. It is converted to stable isotopes. The emitting radiations are positron emission, gamma emission, beta emission and electron capture.
Mass number is the sum of neutron and protons.
Atomic number is the number of protons.
In alpha decay, there will be lose of
In beta decay, there will be a lose of electron from nucleus (neutron turns into proton): there will be no change in mass number and atomic number increases by one.
(f)

Answer to Problem 11PS
Explanation of Solution
The radioactive isotope of
Want to see more full solutions like this?
Chapter 25 Solutions
CHEMISTRY+CHEM...HYBRID ED.(LL)>CUSTOM<
- Relative Abundance 20- Problems 501 (b) The infrared spectrum has a medium-intensity peak at about 1650 cm. There is also a C-H out-of-plane bending peak near 880 cm. 100- 80- 56 41 69 M(84) LL 15 20 25 30 35 55 60 65 70 75 80 85 90 m/zarrow_forwardPolyethylene furanoate is a polymer made from plant-based sources; it is used for packaging. Identify the monomer(s) used in the production of this polymer using a condensation process.arrow_forwardPhenol is the starting material for the synthesis of 2,3,4,5,6-pentachlorophenol, known al-ternatively as pentachlorophenol, or more simply as penta. At one time, penta was widely used as a wood preservative for decks, siding, and outdoor wood furniture. Draw the structural formula for pentachlorophenol and describe its synthesis from phenol.arrow_forward
- 12 Mass Spectrometry (d) This unknown contains oxygen, but it does not show any significant infrared absorption peaks above 3000 cm . 59 100- BO 40 Relative Abundance M(102) - 15 20 25 30 35 40 45 50 5 60 65 70 75 80 85 90 95 100 105 mizarrow_forwardDraw a Haworth projection of a common cyclic form of this monosaccharide: H HO H HO H HO H H -OH CH2OH Click and drag to start drawing a structure. Х : Darrow_forward: Draw the structure of valylasparagine, a dipeptide made from valine and asparagine, as it would appear at physiological pH. Click and drag to start drawing a structure. P Darrow_forward
- Draw the Haworth projection of α-L-mannose. You will find helpful information in the ALEKS Data resource. Click and drag to start drawing a structure. : ཊི Х Darrow_forwardDraw the structure of serine at pH 6.8. Click and drag to start drawing a structure. : d كarrow_forwardTake a look at this molecule, and then answer the questions in the table below it. CH2OH H H H OH OH OH CH2OH H H H H OH H H OH H OH Is this a reducing sugar? yes α β ロ→ロ no ☑ yes Does this molecule contain a glycosidic bond? If you said this molecule does contain a glycosidic bond, write the symbol describing it. O no 0+0 If you said this molecule does contain a glycosidic bond, write the common names (including anomer and enantiomer labels) of the molecules that would be released if that bond were hydrolyzed. If there's more than one molecule, separate each name with a comma. ☐arrow_forward
- Answer the questions in the table below about this molecule: H₂N-CH₂ -C—NH–CH–C—NH–CH—COO- CH3 CH CH3 What kind of molecule is this? 0= CH2 C If you said the molecule is a peptide, write a description of it using 3-letter codes separated ☐ by dashes. polysaccharide peptide amino acid phospolipid none of the above Хarrow_forwardDraw a Haworth projection of a common cyclic form of this monosaccharide: CH₂OH C=O HO H H -OH H OH CH₂OH Click and drag to start drawing a structure. : ☐ Х S '☐arrow_forwardNucleophilic Aromatic Substitution 22.30 Predict all possible products formed from the following nucleophilic substitution reactions. (a) (b) 9 1. NaOH 2. HCI, H₂O CI NH₁(!) +NaNH, -33°C 1. NaOH 2. HCl, H₂Oarrow_forward
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningLiving By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHERChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning




