Life science: flights of homing pigeons. It is known that homing pigeons tend to avoid flying over water in the daytime, perhaps because downdrafts of air over water make flying difficult. Suppose a homing pigeon is released on an island at point C , which is 3 mi directly out in the water from a point B on shore. Point B is 8 mi downshore from the pigeon’s home loft at point A . Assume that a pigeon flying over water uses energy at a rate 1.28 times the rate over land. Toward what point S downshore from A should the pigeon fly in order to minimize the total energy required to get to the home loft at A ? Assume that S is 4.245 mi downshore from A . Total energy = ( Energy rate over water ) × ( Distance over water ) + ( Energy rate over land ) × ( Distance over land ) .
Life science: flights of homing pigeons. It is known that homing pigeons tend to avoid flying over water in the daytime, perhaps because downdrafts of air over water make flying difficult. Suppose a homing pigeon is released on an island at point C , which is 3 mi directly out in the water from a point B on shore. Point B is 8 mi downshore from the pigeon’s home loft at point A . Assume that a pigeon flying over water uses energy at a rate 1.28 times the rate over land. Toward what point S downshore from A should the pigeon fly in order to minimize the total energy required to get to the home loft at A ? Assume that S is 4.245 mi downshore from A . Total energy = ( Energy rate over water ) × ( Distance over water ) + ( Energy rate over land ) × ( Distance over land ) .
Life science: flights of homing pigeons. It is known that homing pigeons tend to avoid flying over water in the daytime, perhaps because downdrafts of air over water make flying difficult. Suppose a homing pigeon is released on an island at point C, which is 3 mi directly out in the water from a point B on shore. Point B is 8 mi downshore from the pigeon’s home loft at point A. Assume that a pigeon flying over water uses energy at a rate 1.28 times the rate over land. Toward what point S downshore from A should the pigeon fly in order to minimize the total energy required to get to the home loft at A? Assume that
S is 4.245 mi downshore from A.
Total energy
=
(
Energy rate over water
)
×
(
Distance over water
)
+
(
Energy rate over land
)
×
(
Distance over land
)
.
For the system consisting of the lines:
and
71 = (-8,5,6) + t(4, −5,3)
72 = (0, −24,9) + u(−1, 6, −3)
a) State whether the two lines are parallel or not and justify your answer.
b) Find the point of intersection, if possible, and classify the system based on the
number of points of intersection and how the lines are related. Show a complete
solution process.
3. [-/2 Points]
DETAILS
MY NOTES
SESSCALCET2 7.4.013.
Find the exact length of the curve.
y = In(sec x), 0 ≤ x ≤ π/4
H.w
WI
M
Wz
A
Sindax
Sind dy max
Утах
at 0.75m from A
w=6KN/M L=2
W2=9 KN/m
P= 10 KN
B
Make the solution handwritten and not
artificial intelligence because I will
give a bad rating if you solve it with
artificial intelligence
Chapter 2 Solutions
Calculus and Its Applications, Books a la Carte Plus MyLab Math Access Card Package (11th Edition)
University Calculus: Early Transcendentals (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Compound Interest Formula Explained, Investment, Monthly & Continuously, Word Problems, Algebra; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=P182Abv3fOk;License: Standard YouTube License, CC-BY
Applications of Algebra (Digit, Age, Work, Clock, Mixture and Rate Problems); Author: EngineerProf PH;https://www.youtube.com/watch?v=Y8aJ_wYCS2g;License: Standard YouTube License, CC-BY