
(a)
The battery current just after closing switch S.
(a)

Answer to Problem 103P
The battery current just after closing the switch S is
Explanation of Solution
Given:
The value of emf is
The value of capacitances are
Formula used:
Apply Kirchhoff’s rule in circuit just after switch is closed,
Here,
Calculation:
Initially, the capacitor is uncharged so,
From equation (1), the battery current just after closing switch S is calculated as,
Conclusion:
Therefore, the battery current just after closing the switch S is
(b)
The battery current a long time after closing the switch S.
(b)

Answer to Problem 103P
The battery current a long time after closing the switch S is
Explanation of Solution
Formula used:
Apply Kirchhoff’s rule in circuit a long time after switch is closed,
Here,
Calculation:
From equation (2), the battery current a long time after closing switch S is calculated as,
Conclusion:
Therefore, the battery current a long time after closing the switch S is
(c)
The current in
(c)

Answer to Problem 103P
The current in
Explanation of Solution
Formula used:
Apply Kirchhoff’s rule at j unction of resistor
Apply Kirchhoff’s rule in loop 1,
Apply Kirchhoff’s rule in loop containing resistor
Calculation:
Differentiate equation (4) with respect to time,
Differentiate equation (5) with respect to time,
From equation (3) and (7),
From equation (4),
From equation (8) and (9),
Let the solution of above differential equation is,
Differentiate equation (10) with respect to time,
From equation (8) and (11),
Equate coefficient of
And,
At
From equation (10),
From equation (10),
Substitute values in equation (13),
Conclusion:
Therefore, the current in
(d)
The charges on capacitors plates a long time after reopening the switch S.
(d)

Answer to Problem 103P
The charges on capacitors plates a long time after reopening the switch S is zero.
Explanation of Solution
Calculation:
If the switch S is reopened, then after long time there will not be any flow of current in the circuit. Thus,
The potential difference across
The charges on
Conclusion:
Therefore, the charges on capacitors plates a long time after reopening the switch S is zero.
Want to see more full solutions like this?
Chapter 25 Solutions
Physics for Scientists and Engineers
- A 1.50 μF capacitor is charging through a 16.0 Ω resistor using a 15.0 V battery. What will be the current when the capacitor has acquired 1/4 of its maximum charge? Please explain all stepsarrow_forwardIn the circuit shown in the figure (Figure 1), the 6.0 Ω resistor is consuming energy at a rate of 24 J/s when the current through it flows as shown. What are the polarity and emf of the battery E, assuming it has negligible internal resistance? Please explain all steps. I know you need to use the loop rule, but I keep getting the answer wrong.arrow_forwardIf you connect a 1.8 F and a 2.6 F capacitor in series, what will be the equivalent capacitance?arrow_forward
- Suppose that a particular heart defibrillator uses a 1.5 x 10-5 Farad capacitor. If it is charged up to a voltage of 7300 volts, how much energy is stored in the capacitor? Give your answer as the number of Joules.arrow_forwardThe voltage difference across an 8.3 nanometer thick cell membrane is 6.5 x 10-5volts. What is the magnitude of the electric field inside this cell membrane? (Assume the field is uniform, and give your answer as the number of Volts per meter... which is the same as the number of Newtons per Coulomb.)arrow_forwardThree identical capacitors are connected in parallel. When this parallel assembly of capacitors is connected to a 12 volt battery, a total of 3.1 x 10-5 coulombs flows through the battery. What is the capacitance of one individual capacitor? (Give your answer as the number of Farads.)arrow_forward
- Suppose you construct your own capacitor by placing two parallel plates at a distance 0.27 meters apart. The plates each have a surface area of 0.64 square meters. What is the capacitance of this setup? (Give your answer as the number of Farads.)arrow_forwardDraw a diagram with the new arrows. No they do not point all towards the center.arrow_forwardExample In Canada, the Earth has B = 0.5 mŢ, pointing north, 70.0° below the horizontal. a) Find the magnetic force on an oxygen ion (O2) moving due east at 250 m/s b) Compare the |FB| to |FE| due to Earth's fair- weather electric field (150 V/m downward).arrow_forward
- Four charges, qa, qb, qa, and qd are fixed at the corners of a square. A charge q that is free to move located at the exact center of the square. Classify the scenarios described according to the force that would be exerted on the center charge q. Assume in each case that q is a positive charge. Do not assume that the fixed charges have equal magnitudes unless the scenario defines such an equality. qa Яс q %b Force is zero Force is to the left Force is to the right Force is undeterminedarrow_forwardCharge qi = -q is located at position (0, d). Charge q = −2q₁ is located at position (d,0). Charge q3 = located at position (2d, 2d). 5qi is y Determine the net electric field Ĕ net at the origin. Enter your expression using ij unit vector notation in terms of the given quantities, the permittivity of free space €0, and exact rational and irrational numbers. d 9₁ d TH net = 92 d d Xarrow_forwardsolve pleasearrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning





