(a)
Interpretation:
For each of the given compounds, whether it is D or L sugar should be determined, the configuration of each chiral center should be assigned and the trend on the configuration of each chiral center should be explained.
Concept introduction:
- The stereo-descriptor used for carbohydrates is D or L. it is based on the dextrorotatory or levorotatory of smallest carbohydrate glyceraldehyde (1 chiral center).
The stereo-descriptor for other carbohydrates of having more than one chiral center will be evaluated by the location of –OH group (right or left) of farthest chiral carbon from the carbonyl group. Such as,
If the –OH group is located in right side then, the carbohydrate is a D-sugar.
If the –OH group is located in left side then, the carbohydrate is a L-sugar.
- Chiral carbon: Chiral carbon is the one which is bonded to four different molecules or groups.
- Configuration of a molecule: The configurations of a molecule arise due to the spatial arrangement of atoms. The configuration can be assigned by following CIP rules as follows.
- Assign numbering to the groups which are bonded to the chiral carbon based on the molecular weight and electronegativity.
- If the sequence of the numbering follows clockwise direction the chiral atom is assigned as R configuration.
- If the sequence of the numbering follows anticlockwise direction the chiral atom is assigned as S configuration.
- If the least priority group is on horizontal line in the fisher projection, then configuration is inverted to the obtained configuration from the above CIP rule which means R configuration becomes S and vice versa.
- The D-configuration is needed not to be dextrorotatory; rather it means the chirality center of farthest from aldo-group is having R-configuration or the –OH group is on right side.
To identify: the given carbohydrate (a) is D or L sugar and the configuration of each chiral center.
(b)
Interpretation:
For each of the given compounds, whether it is D or L sugar should be determined, the configuration of each chiral center should be assigned and the trend on the configuration of each chiral center should be explained.
Concept introduction:
- The stereo-descriptor used for carbohydrates is D or L. it is based on the dextrorotatory or levorotatory of smallest carbohydrate glyceraldehyde (1 chiral center).
The stereo-descriptor for other carbohydrates of having more than one chiral center will be evaluated by the location of –OH group (right or left) of farthest chiral carbon from the carbonyl group. Such as,
If the –OH group is located in right side then, the carbohydrate is a D-sugar.
If the –OH group is located in left side then, the carbohydrate is a L-sugar.
- Chiral carbon: Chiral carbon is the one which is bonded to four different molecules or groups.
- Configuration of a molecule: The configurations of a molecule arise due to the spatial arrangement of atoms. The configuration can be assigned by following CIP rules as follows.
- Assign numbering to the groups which are bonded to the chiral carbon based on the molecular weight and electronegativity.
- If the sequence of the numbering follows clockwise direction the chiral atom is assigned as R configuration.
- If the sequence of the numbering follows anticlockwise direction the chiral atom is assigned as S configuration.
- If the least priority group is on horizontal line in the fisher projection, then configuration is inverted to the obtained configuration from the above CIP rule which means R configuration becomes S and vice versa.
- The D-configuration is needed not to be dextrorotatory; rather it means the chirality center of farthest from aldo-group is having R-configuration or the –OH group is on right side.
To identify: the given carbohydrate (b) is D or L sugar and the configuration of each chiral center.
(c)
Interpretation:
For each of the given compounds, whether it is D or L sugar should be determined, the configuration of each chiral center should be assigned and the trend on the configuration of each chiral center should be explained.
Concept introduction:
- The stereo-descriptor used for carbohydrates is D or L. it is based on the dextrorotatory or levorotatory of smallest carbohydrate glyceraldehyde (1 chiral center).
The stereo-descriptor for other carbohydrates of having more than one chiral center will be evaluated by the location of –OH group (right or left) of farthest chiral carbon from the carbonyl group. Such as,
If the –OH group is located in right side then, the carbohydrate is a D-sugar.
If the –OH group is located in left side then, the carbohydrate is a L-sugar.
- Chiral carbon: Chiral carbon is the one which is bonded to four different molecules or groups.
- Configuration of a molecule: The configurations of a molecule arise due to the spatial arrangement of atoms. The configuration can be assigned by following CIP rules as follows.
- Assign numbering to the groups which are bonded to the chiral carbon based on the molecular weight and electronegativity.
- If the sequence of the numbering follows clockwise direction the chiral atom is assigned as R configuration.
- If the sequence of the numbering follows anticlockwise direction the chiral atom is assigned as S configuration.
- If the least priority group is on horizontal line in the fisher projection, then configuration is inverted to the obtained configuration from the above CIP rule which means R configuration becomes S and vice versa.
- The D-configuration is needed not to be dextrorotatory; rather it means the chirality center of farthest from aldo-group is having R-configuration or the –OH group is on right side.
To identify: the given carbohydrate (c) is D or L sugar and the configuration of each chiral center.
(d)
Interpretation:
For each of the given compounds, whether it is D or L sugar should be determined, the configuration of each chiral center should be assigned and the trend on the configuration of each chiral center should be explained.
Concept introduction:
- The stereo-descriptor used for carbohydrates is D or L. it is based on the dextrorotatory or levorotatory of smallest carbohydrate glyceraldehyde (1 chiral center).
The stereo-descriptor for other carbohydrates of having more than one chiral center will be evaluated by the location of –OH group (right or left) of farthest chiral carbon from the carbonyl group. Such as,
If the –OH group is located in right side then, the carbohydrate is a D-sugar.
If the –OH group is located in left side then, the carbohydrate is a L-sugar.
- Chiral carbon: Chiral carbon is the one which is bonded to four different molecules or groups.
- Configuration of a molecule: The configurations of a molecule arise due to the spatial arrangement of atoms. The configuration can be assigned by following CIP rules as follows.
- Assign numbering to the groups which are bonded to the chiral carbon based on the molecular weight and electronegativity.
- If the sequence of the numbering follows clockwise direction the chiral atom is assigned as R configuration.
- If the sequence of the numbering follows anticlockwise direction the chiral atom is assigned as S configuration.
- If the least priority group is on horizontal line in the fisher projection, then configuration is inverted to the obtained configuration from the above CIP rule which means R configuration becomes S and vice versa.
- The D-configuration is needed not to be dextrorotatory; rather it means the chirality center of farthest from aldo-group is having R-configuration or the –OH group is on right side.
To identify: the given carbohydrate (d) is D or L sugar and the configuration of each chiral center.
(e)
Interpretation:
For each of the given compounds, whether it is D or L sugar should be determined, the configuration of each chiral center should be assigned and the trend on the configuration of each chiral center should be explained.
Concept introduction:
- The stereo-descriptor used for carbohydrates is D or L. it is based on the dextrorotatory or levorotatory of smallest carbohydrate glyceraldehyde (1 chiral center).
The stereo-descriptor for other carbohydrates of having more than one chiral center will be evaluated by the location of –OH group (right or left) of farthest chiral carbon from the carbonyl group. Such as,
If the –OH group is located in right side then, the carbohydrate is a D-sugar.
If the –OH group is located in left side then, the carbohydrate is a L-sugar.
- Chiral carbon: Chiral carbon is the one which is bonded to four different molecules or groups.
- Configuration of a molecule: The configurations of a molecule arise due to the spatial arrangement of atoms. The configuration can be assigned by following CIP rules as follows.
- Assign numbering to the groups which are bonded to the chiral carbon based on the molecular weight and electronegativity.
- If the sequence of the numbering follows clockwise direction the chiral atom is assigned as R configuration.
- If the sequence of the numbering follows anticlockwise direction the chiral atom is assigned as S configuration.
- If the least priority group is on horizontal line in the fisher projection, then configuration is inverted to the obtained configuration from the above CIP rule which means R configuration becomes S and vice versa.
- The D-configuration is needed not to be dextrorotatory; rather it means the chirality center of farthest from aldo-group is having R-configuration or the –OH group is on right side.
To identify: the given carbohydrate (e) is D or L sugar and the configuration of each chiral center.
(f)
Interpretation:
For each of the given compounds, whether it is D or L sugar should be determined, the configuration of each chiral center should be assigned and the trend on the configuration of each chiral center should be explained.
Concept introduction:
- The stereo-descriptor used for carbohydrates is D or L. it is based on the dextrorotatory or levorotatory of smallest carbohydrate glyceraldehyde (1 chiral center).
The stereo-descriptor for other carbohydrates of having more than one chiral center will be evaluated by the location of –OH group (right or left) of farthest chiral carbon from the carbonyl group. Such as,
If the –OH group is located in right side then, the carbohydrate is a D-sugar.
If the –OH group is located in left side then, the carbohydrate is a L-sugar.
- Chiral carbon: Chiral carbon is the one which is bonded to four different molecules or groups.
- Configuration of a molecule: The configurations of a molecule arise due to the spatial arrangement of atoms. The configuration can be assigned by following CIP rules as follows.
- Assign numbering to the groups which are bonded to the chiral carbon based on the molecular weight and electronegativity.
- If the sequence of the numbering follows clockwise direction the chiral atom is assigned as R configuration.
- If the sequence of the numbering follows anticlockwise direction the chiral atom is assigned as S configuration.
- If the least priority group is on horizontal line in the fisher projection, then configuration is inverted to the obtained configuration from the above CIP rule which means R configuration becomes S and vice versa.
- The D-configuration is needed not to be dextrorotatory; rather it means the chirality center of farthest from aldo-group is having R-configuration or the –OH group is on right side.
To explain: the trend on the configuration of each chiral center in each given carbohydrates.

Want to see the full answer?
Check out a sample textbook solution
Chapter 24 Solutions
EBK ORGANIC CHEMISTRY-PRINT COMPANION (
- Including activity, calculate the solubility of Pb(IO3)2 in a matrix of 0.020 M Mg(NO3)2.arrow_forwardIncluding activity coefficients, find [Hg22+] in saturated Hg2Br2 in 0.00100 M KBr.arrow_forwardIncluding activity, calculate the pH of a 0.010 M HCl solution with an ionic strength of 0.10 M.arrow_forward
- Can I please get the graph 1: Concentration vs. Density?arrow_forwardOrder the following series of compounds from highest to lowest reactivity to electrophilic aromatic substitution, explaining your answer: 2-nitrophenol, p-Toluidine, N-(4-methylphenyl)acetamide, 4-methylbenzonitrile, 4-(trifluoromethyl)benzonitrile.arrow_forwardOrdene la siguiente serie de compuestos de mayor a menor reactividad a la sustitución aromática electrofílica, explicando su respuesta: ácido bencenosulfónico, fluorobenceno, etilbenceno, clorobenceno, terc-butilbenceno, acetofenona.arrow_forward
- Can I please get all final concentrations please!arrow_forwardState the detailed mechanism of the reaction of benzene with isopropanol in sulfuric acid.arrow_forwardDo not apply the calculations, based on the approximation of the stationary state, to make them perform correctly. Basta discard the 3 responses that you encounter that are obviously erroneous if you apply the formula to determine the speed of a reaction. For the decomposition reaction of N2O5(g): 2 N2O5(g) · 4 NO2(g) + O2(g), the following mechanism has been proposed: N2O5 -> NO2 + NO3_(K1) NO2 + NO3 →> N2O5 (k-1) → NO2 + NO3 → NO2 + O2 + NO (K2) NO + N2O5 → NO2 + NO2 + NO2 (K3) Give the expression for the acceptable rate. (A). d[N₂O] dt = -1 2k,k₂[N205] k₁+k₂ d[N₂O5] (B). dt =-k₁[N₂O₂] + k₁[NO2][NO3] - k₂[NO2]³ (C). d[N₂O] dt =-k₁[N₂O] + k₁[N205] - K3 [NO] [N205] (D). d[N2O5] =-k₁[NO] - K3[NO] [N₂05] dtarrow_forward
- A 0.10 M solution of acetic acid (CH3COOH, Ka = 1.8 x 10^-5) is titrated with a 0.0250 M solution of magnesium hydroxide (Mg(OH)2). If 10.0 mL of the acid solution is titrated with 20.0 mL of the base solution, what is the pH of the resulting solution?arrow_forwardFor the decomposition reaction of N2O5(g): 2 N2O5(g) → 4 NO2(g) + O2(g), the following mechanism has been proposed: N2O5 NO2 + NO3 (K1) | NO2 + NO3 → N2O5 (k-1) | NO2 + NO3 NO2 + O2 + NO (k2) | NO + N2O51 NO2 + NO2 + NO2 (K3) → Give the expression for the acceptable rate. → → (A). d[N205] dt == 2k,k₂[N₂O₂] k₁+k₁₂ (B). d[N2O5] =-k₁[N₂O] + k₁[NO₂] [NO3] - k₂[NO₂]³ dt (C). d[N2O5] =-k₁[N₂O] + k [NO] - k₂[NO] [NO] d[N2O5] (D). = dt = -k₁[N2O5] - k¸[NO][N₂05] dt Do not apply the calculations, based on the approximation of the stationary state, to make them perform correctly. Basta discard the 3 responses that you encounter that are obviously erroneous if you apply the formula to determine the speed of a reaction.arrow_forwardFor the decomposition reaction of N2O5(g): 2 N2O5(g) → 4 NO2(g) + O2(g), the following mechanism has been proposed: N2O5 NO2 + NO3 (K1) | NO2 + NO3 → N2O5 (k-1) | NO2 + NO3 NO2 + O2 + NO (k2) | NO + N2O51 NO2 + NO2 + NO2 (K3) → Give the expression for the acceptable rate. → → (A). d[N205] dt == 2k,k₂[N₂O₂] k₁+k₁₂ (B). d[N2O5] =-k₁[N₂O] + k₁[NO₂] [NO3] - k₂[NO₂]³ dt (C). d[N2O5] =-k₁[N₂O] + k [NO] - k₂[NO] [NO] d[N2O5] (D). = dt = -k₁[N2O5] - k¸[NO][N₂05] dt Do not apply the calculations, based on the approximation of the stationary state, to make them perform correctly. Basta discard the 3 responses that you encounter that are obviously erroneous if you apply the formula to determine the speed of a reaction.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





