FUNDAMENTALS OF PHYSICS - EXTENDED
12th Edition
ISBN: 9781119773511
Author: Halliday
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 24, Problem 71P
SSM Starting from Eq. 24-30, derive an expression for the electric field due to a dipole at a point on the dipole axis.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Starting from Eq. 24-30, derive an expression for the electric field due to a dipole at a point on the dipole axis.
The dipole moment of the water molecule (H,O) is
6.17 x 10-30 C.m. Consider a water molecule located at the
origin whose dipole moment p points in the positive x direction. A
chlorine ion (CI
x = 3.00 x 10-9 meters. Assume that this x value is much
larger than the separation d between the charges in the dipole,
so that the approximate expression for the electric field along the
dipole axis can be used.
Part A
of charge -1.60 x 10-19 C, is located at
Find the magnitude of the electric force, ignoring the sign, that the water molecule exerts on the chlorine ion.
• View Available Hint(s)
6.57 • 1012
N
What electric field strength and direction will allow the proton to pass through
this region of space without being deflected? Assume that Ẻ = [−0.020 T]î and
v = [3.0 × 107 m/s]ŷ
Chapter 24 Solutions
FUNDAMENTALS OF PHYSICS - EXTENDED
Ch. 24 - In the situation of Question 7, is the work done...Ch. 24 - Figure 24-26 shows four pairs of charged particles...Ch. 24 - SSM A particular 12 V car battery can send a total...Ch. 24 - The electric potential difference between the...Ch. 24 - Suppose that in a lightning flash the potential...Ch. 24 - Two large, parallel, conducting plates are 12 cm...Ch. 24 - SSM An infinite nonconducting sheet has a surface...Ch. 24 - The electric field in a region of space has the...Ch. 24 - An infinite nonconducting sheet has a surface...Ch. 24 - GO Two uniformly charged, infinite, nonconducting...
Ch. 24 - A nonconducting sphere has radius R = 2.31 cm and...Ch. 24 - As a space shuttle moves through the dilute...Ch. 24 - What are a the change and b the charge density on...Ch. 24 - SSM ILW A spherical drop of water carrying a...Ch. 24 - GO A non uniform linear charge distribution given...Ch. 24 - Two large parallel metal plates are 1.5 cm apart...Ch. 24 - The electric potential al points in an xy plane is...Ch. 24 - The electric potential V in the space between two...Ch. 24 - SSM What is the magnitude of the electric field at...Ch. 24 - Figure 24-47 shows a thin plastic rod of length L...Ch. 24 - A particle of charge 7.5 C is released from rest...Ch. 24 - a What is the electric potential energy of two...Ch. 24 - ILW A particle of charge q is fixed at point P,...Ch. 24 - A charge of 9.0 nC is uniformly distributed around...Ch. 24 - GO What is the escape speed for an electron...Ch. 24 - A thin, spherical conducting shell of radius R is...Ch. 24 - GO Two electrons are fixed 2.0 cm apart. Another...Ch. 24 - Two tiny metal sphere? A and B, mass mA = 5.00 g...Ch. 24 - An electron is projected with an initial speed of...Ch. 24 - SSM Identical 50 C charges are fixed or an x axis...Ch. 24 - Suppose N electrons can be placed in either of two...Ch. 24 - Sphere 1 with radius R1 has positive charge q....Ch. 24 - SSM WWW Two metal spheres, each of radius 3.0 cm,...Ch. 24 - A hollow metal sphere has a potential of 400 V...Ch. 24 - SSM What is the excess charge on a conducting...Ch. 24 - Two isolated, concentric, conducting spherical...Ch. 24 - A metal sphere of radius 15 cm has a net charge of...Ch. 24 - Here are the charges and coordinates of two...Ch. 24 - SSM A long, solid, conducting cylinder has a...Ch. 24 - The chocolate crumb mystery. This story begins...Ch. 24 - SSM Starting from Eq. 24-30, derive an expression...Ch. 24 - The magnitude E of an electric field depends on...Ch. 24 - a If an isolated conducting sphere 10 cm in radius...Ch. 24 - An electric field of approximately 100 V/m is...Ch. 24 - A Gaussian sphere of radius 4.00 cm is centered or...Ch. 24 - In a Millikan oil-drop experiment Module 22-6, a...Ch. 24 - An electron is released from rest on the axis of...Ch. 24 - Figure 24-64 shows a ring of outer radius R = 13.0...Ch. 24 - a If Earth had a uniform surface charge density of...Ch. 24 - A solid conducting sphere of radius 3.0 cm has a...Ch. 24 - SSM Three 0.12 C charges form an equilateral...Ch. 24 - Initially two electrons are fixed in place with a...Ch. 24 - A particle of positive charge Q is fixed at point...Ch. 24 - Two charged, parallel, flat conducting surfaces...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Calculate the lattice energy of CaCl2 using a Born-Haber cycle and data from Appendices F and L and Table 7.5. ...
Chemistry & Chemical Reactivity
A source of electromagnetic radiation produces infrared light. Which of the following could be the wavelength ...
Chemistry: The Central Science (14th Edition)
61. What is the pH of a solution in which 224 mL of HCl(g), measured at 27.2 °C and 1.02 atm, is dissolved in 1...
Chemistry: A Molecular Approach (4th Edition)
Provide the reagents necessary for the following syntheses. More than one step may be required. (a) (b) (c) (d)...
Organic Chemistry
EVOLUTION CONNECTION The percentages of naturally occurring elements making up the human body (see Table 2.1) a...
Campbell Biology (11th Edition)
31. What are the speed and altitude of a geosynchronous satellite
orbiting Mars? Mars rotates on its axis once...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Consider the electric dipole shown in Figure P19.20. Show that the electric field at a distant point on the + x axis is Ex 4 keqa/x3.arrow_forwardWhat electric field strength and direction will allow the proton to pass through this region of space without being deflected? Assume that B = [-0.020 T]ê and [3.0 x 107 m/s]ŷarrow_forwardplaced in a uniform electric field E of magnitude 20 N/C. Figure 22-62 gives a the potential energy U of the dipole versus the angle e between E and the dipole moment p. The vertical axis scale is set by U, - 100 x 10-28 J. What U, is the magnitude of p? -U, Finure 22-62 Problem 58 (f s-01)Aarrow_forward
- A capacitor with interlayer distance d and surface area A (LxL=A) has a charge Q and the capacitor is not connected to the source. In this case, when an insulating rod with pediment d and dielectric coefficient K is inserted x (x<L) from one end, what is the direction (inside or outside of the capacitor) and magnitude of the electrostatic force acting on the rod?arrow_forwardRed blood cells can be modeled as spheres of 7.03 µm diameter with -2.55 × 10-12 C excess charge uniformly distributed over the surface. Find the electric field at the following locations, with radially outward defined as the positive direction and radially inward defined as the negative direction. The permittivity of free space eo is 8.85 × 10-12 C/(V-m). What is the electric field Éj inside the cell at a distance of 3.25 µm from the center?arrow_forwardAn isolated charged conducting sphere has a radius R = 14.0 cm. At a distance of r = 18.0 cm from the center of the sphere the electric field due to the sphere has a magnitude of E = 4.90 x 104 N/C. (a) What is its surface charge density (in µC/m?)? | µC/m² (b) What is its capacitance (in pF)? PF (c) What If? A larger sphere of radius 28.0 cm is now added so as to be concentric with the first sphere. What is the capacitance (in pF) of the two-sphere system? pFarrow_forward
- A charge of 3 μC is uniformly distributed along a filament of length 60 cm. What is the electric field at a point 30 cm from one of the ends along the filament direction?arrow_forwardA metal sphere of radius R=2.0 cm is suspended from the ceiling by an insulating rope. A point sphere with q=-3.OnC charge is fixed to the ground 3.0m below the center of the sphere. What could be the highest tensile force that can occur in the rope when the metal sphere begins to be charged with an electrical charge? (The electric field to ionize the air is 5x104 V/m.)arrow_forwardk A hollow spherical shell carries charge density p = in the region a srsb.Theelectric field in the region aarrow_forwardEx:Region y 0 is a dielectric medium (€,r1 = 2). If there is a surface charge of p, = 2 n (а) А (3,-2,2) (b) В (-4,1,5) on the conductor, determine E and D at т2arrow_forwardWhat must the charge (sign and magnitude) of a 3.45 gg particle be for it to remain stationary when placed in a downward-directed electric field of magnitude 530 N/C? Express your answer in microcoulombs.arrow_forwardFigure 22-40 shows an electric dipole. What are the (a) magni- tude and (b) direction (rèlative to the positive direction of the x axis) of the dipole's electric field at point P, located at distance r> d? +q d/2 d/2 Fig. 22-40 Problem 19.arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY