
Concept explainers
(a)
To find: The comparison of two predicted
(a)

Answer to Problem 70E
Solution: The predicted dominant arm strength for a baseball player is
Explanation of Solution
Calculation: It is noted from the referred Exercises 2.70 and 2.71 that the predicted mean strength of the dominant arm
The difference in the two predicted mean strengths is calculated as:
Therefore, the difference in the mean strengths of a baseball and a non-baseball player is positive. This implies that the predicted dominant arm strength for a baseball player, who uses exercise strength, is greater than the predicted dominant arm strength for a baseball player, who uses control more than the exercise strength. Thus, it can be said that
(b)
To explain: The inference for the difference in the two predicted mean strengths.
(b)

Answer to Problem 70E
Solution: There is a positive impact of the baseball throwing exercise over control as the difference in the mean arm strengths of the baseball player and a non-baseball player is positive.
Explanation of Solution
(c)
Section 1
To find: The predicted dominant arm strengths for non-dominant strengths
(c)
Section 1

Answer to Problem 70E
Solution: The results obtained are represented in the following table:
Dominant arm Strength |
|||
Non-Baseball Player |
Baseball Player |
||
Non-Dominant Arm Strength |
|||
Explanation of Solution
Calculation: The linear regression equations for a non-baseball player is:
and for a baseball player is:
From the above part (a), the dominant arm strengths when the non-dominant strength is
The dominant arm strengths provided the non-dominant arm strength as
For a non-baseball player, it is represented as
For a baseball player, it is represented as
The dominant arm strengths provided the non-dominant arm strength as
For a non-baseball player, it is represented as
For a baseball player, it is represented as
The above results obtained can be represented in the form of a table as follows:
Dominant arm Strength |
|||
Non-Baseball Player |
Baseball Player |
||
Non-Dominant Arm Strength |
|||
Section 2:
To find: The differences in the respective arm strengths.
Section 2:

Answer to Problem 70E
Solution: The differences are
Explanation of Solution
Calculation: The arm strengths for the non-dominant arm strengths
Dominant arm Strength |
|||
Non-Baseball Player |
Baseball Player |
||
Non-Dominant Arm Strength |
|||
The difference in the arm strengths of baseball and the non-baseball players are calculated as follows:
For non-dominant arm strength
For non-dominant arm strength
Hence, the differences are
Section 3:
To find: A table for the results of the three calculations.
Section 3:

Answer to Problem 70E
Solution: The resultant table is obtained as follows:
Dominant arm Strength |
||||
Non-Baseball Player |
Baseball Player |
Differences |
||
Non-Dominant Arm Strength |
||||
Explanation of Solution
Also,
The differences in the estimated strengths have been calculated as:
where,
The above information can be represented in the form of a table as follows:
Dominant arm Strength |
||||
Non-Baseball Player |
Baseball Player |
Differences |
||
Non-Dominant Arm Strength |
||||
(d)
Section 1:
To explain: The summary of results obtained in part (c) of exercise 2.72.
(d)
Section 1:

Answer to Problem 70E
Solution: The results show that the baseball throwing exercise has resulted in an improvement in the dominant arm strengths of the baseball players as compared to the non-baseball players for all the three cases. That is, the difference between the two is positive for all the three cases.
Explanation of Solution
Dominant arm Strength |
||||
Non-Baseball Player |
Baseball Player |
Difference |
||
Non-Dominant Arm Strength |
||||
From the table obtained, it is ascertained that the difference in the dominant arm strengths of baseball and the non-baseball players for all the three cases of non-dominant arm strengths as
Section 2:
To explain: The reason for the non-similarity of the three differences obtained.
Section 2:

Answer to Problem 70E
Solution: The non-similarity is due to a positive relation between the dominant arm strength and the non-dominant arm strength. The more the value of non-dominant arm strength, the more will be the dominant arm strength and hence, the greater will be the difference.
Explanation of Solution
respectively. The point to be noted here is that when the non-dominant arm strength increases, the value of the dominant arm strength also improves, thus, the difference in the dominant arm strengths of baseball and the non-baseball players also improves. That is, there is a positive relation amongst the non-dominant arm strength and the difference thus obtained. The more the value of non-dominant strength, the more will be the dominant strength and the more will be the difference between the two. That is why, there is a non-similarity of the differences in all the three cases.
Want to see more full solutions like this?
Chapter 2 Solutions
Introduction to the Practice of Statistics: w/CrunchIt/EESEE Access Card
- In a survey of a group of men, the heights in the 20-29 age group were normally distributed, with a mean of 69.6 inches and a standard deviation of 4.0 inches. A study participant is randomly selected. Complete parts (a) through (d) below. (a) Find the probability that a study participant has a height that is less than 68 inches. The probability that the study participant selected at random is less than 68 inches tall is 0.4. (Round to four decimal places as needed.) 20 2arrow_forwardPEER REPLY 1: Choose a classmate's Main Post and review their decision making process. 1. Choose a risk level for each of the states of nature (assign a probability value to each). 2. Explain why each risk level is chosen. 3. Which alternative do you believe would be the best based on the maximum EMV? 4. Do you feel determining the expected value with perfect information (EVWPI) is worthwhile in this situation? Why or why not?arrow_forwardQuestions An insurance company's cumulative incurred claims for the last 5 accident years are given in the following table: Development Year Accident Year 0 2018 1 2 3 4 245 267 274 289 292 2019 255 276 288 294 2020 265 283 292 2021 263 278 2022 271 It can be assumed that claims are fully run off after 4 years. The premiums received for each year are: Accident Year Premium 2018 306 2019 312 2020 318 2021 326 2022 330 You do not need to make any allowance for inflation. 1. (a) Calculate the reserve at the end of 2022 using the basic chain ladder method. (b) Calculate the reserve at the end of 2022 using the Bornhuetter-Ferguson method. 2. Comment on the differences in the reserves produced by the methods in Part 1.arrow_forward
- You are provided with data that includes all 50 states of the United States. Your task is to draw a sample of: o 20 States using Random Sampling (2 points: 1 for random number generation; 1 for random sample) o 10 States using Systematic Sampling (4 points: 1 for random numbers generation; 1 for random sample different from the previous answer; 1 for correct K value calculation table; 1 for correct sample drawn by using systematic sampling) (For systematic sampling, do not use the original data directly. Instead, first randomize the data, and then use the randomized dataset to draw your sample. Furthermore, do not use the random list previously generated, instead, generate a new random sample for this part. For more details, please see the snapshot provided at the end.) Upload a Microsoft Excel file with two separate sheets. One sheet provides random sampling while the other provides systematic sampling. Excel snapshots that can help you in organizing columns are provided on the next…arrow_forwardThe population mean and standard deviation are given below. Find the required probability and determine whether the given sample mean would be considered unusual. For a sample of n = 65, find the probability of a sample mean being greater than 225 if μ = 224 and σ = 3.5. For a sample of n = 65, the probability of a sample mean being greater than 225 if μ=224 and σ = 3.5 is 0.0102 (Round to four decimal places as needed.)arrow_forward***Please do not just simply copy and paste the other solution for this problem posted on bartleby as that solution does not have all of the parts completed for this problem. Please answer this I will leave a like on the problem. The data needed to answer this question is given in the following link (file is on view only so if you would like to make a copy to make it easier for yourself feel free to do so) https://docs.google.com/spreadsheets/d/1aV5rsxdNjHnkeTkm5VqHzBXZgW-Ptbs3vqwk0SYiQPo/edit?usp=sharingarrow_forward
- The data needed to answer this question is given in the following link (file is on view only so if you would like to make a copy to make it easier for yourself feel free to do so) https://docs.google.com/spreadsheets/d/1aV5rsxdNjHnkeTkm5VqHzBXZgW-Ptbs3vqwk0SYiQPo/edit?usp=sharingarrow_forwardThe following relates to Problems 4 and 5. Christchurch, New Zealand experienced a major earthquake on February 22, 2011. It destroyed 100,000 homes. Data were collected on a sample of 300 damaged homes. These data are saved in the file called CIEG315 Homework 4 data.xlsx, which is available on Canvas under Files. A subset of the data is shown in the accompanying table. Two of the variables are qualitative in nature: Wall construction and roof construction. Two of the variables are quantitative: (1) Peak ground acceleration (PGA), a measure of the intensity of ground shaking that the home experienced in the earthquake (in units of acceleration of gravity, g); (2) Damage, which indicates the amount of damage experienced in the earthquake in New Zealand dollars; and (3) Building value, the pre-earthquake value of the home in New Zealand dollars. PGA (g) Damage (NZ$) Building Value (NZ$) Wall Construction Roof Construction Property ID 1 0.645 2 0.101 141,416 2,826 253,000 B 305,000 B T 3…arrow_forwardRose Par posted Apr 5, 2025 9:01 PM Subscribe To: Store Owner From: Rose Par, Manager Subject: Decision About Selling Custom Flower Bouquets Date: April 5, 2025 Our shop, which prides itself on selling handmade gifts and cultural items, has recently received inquiries from customers about the availability of fresh flower bouquets for special occasions. This has prompted me to consider whether we should introduce custom flower bouquets in our shop. We need to decide whether to start offering this new product. There are three options: provide a complete selection of custom bouquets for events like birthdays and anniversaries, start small with just a few ready-made flower arrangements, or do not add flowers. There are also three possible outcomes. First, we might see high demand, and the bouquets could sell quickly. Second, we might have medium demand, with a few sold each week. Third, there might be low demand, and the flowers may not sell well, possibly going to waste. These outcomes…arrow_forward
- Consider the state space model X₁ = §Xt−1 + Wt, Yt = AX+Vt, where Xt Є R4 and Y E R². Suppose we know the covariance matrices for Wt and Vt. How many unknown parameters are there in the model?arrow_forwardBusiness Discussarrow_forwardYou want to obtain a sample to estimate the proportion of a population that possess a particular genetic marker. Based on previous evidence, you believe approximately p∗=11% of the population have the genetic marker. You would like to be 90% confident that your estimate is within 0.5% of the true population proportion. How large of a sample size is required?n = (Wrong: 10,603) Do not round mid-calculation. However, you may use a critical value accurate to three decimal places.arrow_forward
- MATLAB: An Introduction with ApplicationsStatisticsISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncProbability and Statistics for Engineering and th...StatisticsISBN:9781305251809Author:Jay L. DevorePublisher:Cengage LearningStatistics for The Behavioral Sciences (MindTap C...StatisticsISBN:9781305504912Author:Frederick J Gravetter, Larry B. WallnauPublisher:Cengage Learning
- Elementary Statistics: Picturing the World (7th E...StatisticsISBN:9780134683416Author:Ron Larson, Betsy FarberPublisher:PEARSONThe Basic Practice of StatisticsStatisticsISBN:9781319042578Author:David S. Moore, William I. Notz, Michael A. FlignerPublisher:W. H. FreemanIntroduction to the Practice of StatisticsStatisticsISBN:9781319013387Author:David S. Moore, George P. McCabe, Bruce A. CraigPublisher:W. H. Freeman





