Concept explainers
(a)
To find: The comparison of two predicted
(a)
Answer to Problem 70E
Solution: The predicted dominant arm strength for a baseball player is
Explanation of Solution
Calculation: It is noted from the referred Exercises 2.70 and 2.71 that the predicted mean strength of the dominant arm
The difference in the two predicted mean strengths is calculated as:
Therefore, the difference in the mean strengths of a baseball and a non-baseball player is positive. This implies that the predicted dominant arm strength for a baseball player, who uses exercise strength, is greater than the predicted dominant arm strength for a baseball player, who uses control more than the exercise strength. Thus, it can be said that
(b)
To explain: The inference for the difference in the two predicted mean strengths.
(b)
Answer to Problem 70E
Solution: There is a positive impact of the baseball throwing exercise over control as the difference in the mean arm strengths of the baseball player and a non-baseball player is positive.
Explanation of Solution
(c)
Section 1
To find: The predicted dominant arm strengths for non-dominant strengths
(c)
Section 1
Answer to Problem 70E
Solution: The results obtained are represented in the following table:
Dominant arm Strength |
|||
Non-Baseball Player |
Baseball Player |
||
Non-Dominant Arm Strength |
|||
Explanation of Solution
Calculation: The linear regression equations for a non-baseball player is:
and for a baseball player is:
From the above part (a), the dominant arm strengths when the non-dominant strength is
The dominant arm strengths provided the non-dominant arm strength as
For a non-baseball player, it is represented as
For a baseball player, it is represented as
The dominant arm strengths provided the non-dominant arm strength as
For a non-baseball player, it is represented as
For a baseball player, it is represented as
The above results obtained can be represented in the form of a table as follows:
Dominant arm Strength |
|||
Non-Baseball Player |
Baseball Player |
||
Non-Dominant Arm Strength |
|||
Section 2:
To find: The differences in the respective arm strengths.
Section 2:
Answer to Problem 70E
Solution: The differences are
Explanation of Solution
Calculation: The arm strengths for the non-dominant arm strengths
Dominant arm Strength |
|||
Non-Baseball Player |
Baseball Player |
||
Non-Dominant Arm Strength |
|||
The difference in the arm strengths of baseball and the non-baseball players are calculated as follows:
For non-dominant arm strength
For non-dominant arm strength
Hence, the differences are
Section 3:
To find: A table for the results of the three calculations.
Section 3:
Answer to Problem 70E
Solution: The resultant table is obtained as follows:
Dominant arm Strength |
||||
Non-Baseball Player |
Baseball Player |
Differences |
||
Non-Dominant Arm Strength |
||||
Explanation of Solution
Also,
The differences in the estimated strengths have been calculated as:
where,
The above information can be represented in the form of a table as follows:
Dominant arm Strength |
||||
Non-Baseball Player |
Baseball Player |
Differences |
||
Non-Dominant Arm Strength |
||||
(d)
Section 1:
To explain: The summary of results obtained in part (c) of exercise 2.72.
(d)
Section 1:
Answer to Problem 70E
Solution: The results show that the baseball throwing exercise has resulted in an improvement in the dominant arm strengths of the baseball players as compared to the non-baseball players for all the three cases. That is, the difference between the two is positive for all the three cases.
Explanation of Solution
Dominant arm Strength |
||||
Non-Baseball Player |
Baseball Player |
Difference |
||
Non-Dominant Arm Strength |
||||
From the table obtained, it is ascertained that the difference in the dominant arm strengths of baseball and the non-baseball players for all the three cases of non-dominant arm strengths as
Section 2:
To explain: The reason for the non-similarity of the three differences obtained.
Section 2:
Answer to Problem 70E
Solution: The non-similarity is due to a positive relation between the dominant arm strength and the non-dominant arm strength. The more the value of non-dominant arm strength, the more will be the dominant arm strength and hence, the greater will be the difference.
Explanation of Solution
respectively. The point to be noted here is that when the non-dominant arm strength increases, the value of the dominant arm strength also improves, thus, the difference in the dominant arm strengths of baseball and the non-baseball players also improves. That is, there is a positive relation amongst the non-dominant arm strength and the difference thus obtained. The more the value of non-dominant strength, the more will be the dominant strength and the more will be the difference between the two. That is why, there is a non-similarity of the differences in all the three cases.
Want to see more full solutions like this?
Chapter 2 Solutions
Introduction to the Practice of Statistics: w/CrunchIt/EESEE Access Card
- Negate the following compound statement using De Morgans's laws.arrow_forwardQuestion 6: Negate the following compound statements, using De Morgan's laws. A) If Alberta was under water entirely then there should be no fossil of mammals.arrow_forwardNegate the following compound statement using De Morgans's laws.arrow_forward
- Characterize (with proof) all connected graphs that contain no even cycles in terms oftheir blocks.arrow_forwardLet G be a connected graph that does not have P4 or C3 as an induced subgraph (i.e.,G is P4, C3 free). Prove that G is a complete bipartite grapharrow_forwardProve sufficiency of the condition for a graph to be bipartite that is, prove that if G hasno odd cycles then G is bipartite as follows:Assume that the statement is false and that G is an edge minimal counterexample. That is, Gsatisfies the conditions and is not bipartite but G − e is bipartite for any edge e. (Note thatthis is essentially induction, just using different terminology.) What does minimality say aboutconnectivity of G? Can G − e be disconnected? Explain why if there is an edge between twovertices in the same part of a bipartition of G − e then there is an odd cyclearrow_forward
- Let G be a connected graph that does not have P4 or C4 as an induced subgraph (i.e.,G is P4, C4 free). Prove that G has a vertex adjacent to all othersarrow_forwardWe consider a one-period market with the following properties: the current stock priceis S0 = 4. At time T = 1 year, the stock has either moved up to S1 = 8 (with probability0.7) or down towards S1 = 2 (with probability 0.3). We consider a call option on thisstock with maturity T = 1 and strike price K = 5. The interest rate on the money marketis 25% yearly.(a) Find the replicating portfolio (φ, ψ) corresponding to this call option.(b) Find the risk-neutral (no-arbitrage) price of this call option.(c) We now consider a put option with maturity T = 1 and strike price K = 3 onthe same market. Find the risk-neutral price of this put option. Reminder: A putoption gives you the right to sell the stock for the strike price K.1(d) An investor with initial capital X0 = 0 wants to invest on this market. He buysα shares of the stock (or sells them if α is negative) and buys β call options (orsells them is β is negative). He invests the cash balance on the money market (orborrows if the amount is…arrow_forwardDetermine if the two statements are equivalent using a truth tablearrow_forward
- Question 4: Determine if pair of statements A and B are equivalent or not, using truth table. A. (~qp)^~q в. р л~9arrow_forwardDetermine if the two statements are equalivalent using a truth tablearrow_forwardQuestion 3: p and q represent the following simple statements. p: Calgary is the capital of Alberta. A) Determine the value of each simple statement p and q. B) Then, without truth table, determine the va q: Alberta is a province of Canada. for each following compound statement below. pvq р^~q ~рл~q ~q→ p ~P~q Pq b~ (d~ ← b~) d~ (b~ v d) 0 4arrow_forward
- MATLAB: An Introduction with ApplicationsStatisticsISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncProbability and Statistics for Engineering and th...StatisticsISBN:9781305251809Author:Jay L. DevorePublisher:Cengage LearningStatistics for The Behavioral Sciences (MindTap C...StatisticsISBN:9781305504912Author:Frederick J Gravetter, Larry B. WallnauPublisher:Cengage Learning
- Elementary Statistics: Picturing the World (7th E...StatisticsISBN:9780134683416Author:Ron Larson, Betsy FarberPublisher:PEARSONThe Basic Practice of StatisticsStatisticsISBN:9781319042578Author:David S. Moore, William I. Notz, Michael A. FlignerPublisher:W. H. FreemanIntroduction to the Practice of StatisticsStatisticsISBN:9781319013387Author:David S. Moore, George P. McCabe, Bruce A. CraigPublisher:W. H. Freeman