FUND.OF PHYSICS(LL)-PRINT COMP-W/ACCESS
11th Edition
ISBN: 9781119459170
Author: Halliday
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 24, Problem 65P
SSM What is the excess charge on a
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
1. A charge of -25 μC is distributed uniformly throughout a spherical volume of radius 11.5 cm.
Determine the electric field due to this charge at a distance of (a) 2 cm, (b) 4.6 cm, and (c) 25 cm from
the center of the sphere.
(a) =
=
(b) E =
(c)Ẻ =
=
NC NC NC
1.
A long silver rod of radius 3.5 cm has a charge of -3.9
ис
on its surface. Here ŕ is a unit vector
ст
directed perpendicularly away from the axis of the rod as shown in the figure.
(a) Find the electric field at a point 5 cm from the center of the rod (an outside point).
E =
N
C
(b) Find the electric field at a point 1.8 cm from the center of the rod (an inside point)
E=0
Think & Prepare
N
C
1. Is there a symmetry in the charge distribution? What kind of symmetry?
2. The problem gives the charge per unit length 1. How do you figure out the surface charge density σ
from a?
1. Determine the electric flux through each surface whose cross-section is shown below.
55
S₂
-29
S5
SA
S3
+ 9
Enter your answer in terms of q and ε
Φ
(a) s₁
(b) s₂
=
-29
(C) Φ
զ
Ερ
(d) SA
=
(e) $5
(f) Sa
$6
=
II
✓
-29
S6
+39
Chapter 24 Solutions
FUND.OF PHYSICS(LL)-PRINT COMP-W/ACCESS
Ch. 24 - Figure 24-24 shows eight particles that form a...Ch. 24 - Figure 24-25 shows three sets of cross sections of...Ch. 24 - Figure 24-26 shows four pairs of charged...Ch. 24 - Figure 24-27 gives the electric potential V as a...Ch. 24 - Figure 24-28 shows three paths along which we can...Ch. 24 - Figure 24-29 shows four arrangement? of charged...Ch. 24 - Figure 24-30 shows a system of three charged...Ch. 24 - In the situation of Question 7, is the work done...Ch. 24 - Figure 24-26 shows four pairs of charged particles...Ch. 24 - a In Fig. 24-31a, what is the potential at point P...
Ch. 24 - Figure 24-32 shows a thin, uniformly charged rod...Ch. 24 - In Fig. 24-33, a particle is to be released at...Ch. 24 - SSM A particular 12 V car battery can send a total...Ch. 24 - The electric potential difference between the...Ch. 24 - Suppose that in a lightning flash the potential...Ch. 24 - Two large, parallel, conducting plates are 12 cm...Ch. 24 - SSM An infinite nonconducting sheet has a surface...Ch. 24 - When an electron moves from A to B along an...Ch. 24 - The electric field in a region of space has the...Ch. 24 - A graph of the x component of the electric field...Ch. 24 - Prob. 9PCh. 24 - GO Two uniformly charged, infinite, nonconducting...Ch. 24 - A nonconducting sphere has radius R = 2.31 cm and...Ch. 24 - As a space shuttle moves through the dilute...Ch. 24 - What are a the change and b the charge density on...Ch. 24 - Consider a particle with charge q = 1.0 C, point A...Ch. 24 - SSM ILW A spherical drop of water carrying a...Ch. 24 - GO Figure 24-37 shows a rectangular array of...Ch. 24 - GO In Fig.24-33, what is the net electric...Ch. 24 - GO Two charged particles are shown in Fig. 24-39a....Ch. 24 - In Fig. 24-40, particles with the charges q1 = 5e...Ch. 24 - Two particles, of charges q1 and q2, are separated...Ch. 24 - ILW The ammonia molecule NH3 has a permanent...Ch. 24 - In Fig. 24-41a, a particle of elementary charge e...Ch. 24 - a Figure 24-42a shows a nonconducting rod of...Ch. 24 - In Fig. 21-43, a plastic rod having a uniformly...Ch. 24 - A plastic rod has been bent into a circle of...Ch. 24 - GO Figure 24-45 shows a thin rod with a uniform...Ch. 24 - In Fig. 24-46, three thin plastic rods form...Ch. 24 - GO Figure 24-47 shows a thin plastic rod of length...Ch. 24 - In Fig. 24-48, what is the net electric potential...Ch. 24 - GO The smiling face of Fig. 24-49 consists of...Ch. 24 - SSM WWW A plastic disk of radius R = 64.0 cm is...Ch. 24 - GO A non uniform linear charge distribution given...Ch. 24 - GO The thin plastic rod shown in Fig. 24-47 has...Ch. 24 - Two large parallel metal plates are 1.5 cm apart...Ch. 24 - The electric potential al points in an xy plane is...Ch. 24 - The electric potential V in the space between two...Ch. 24 - SSM What is the magnitude of the electric field at...Ch. 24 - Figure 24-47 shows a thin plastic rod of length L...Ch. 24 - An electron is placed in an xy plane where I he...Ch. 24 - GO The thin plastic rod of length L = 10.0 cm in...Ch. 24 - A particle of charge 7.5 C is released from rest...Ch. 24 - a What is the electric potential energy of two...Ch. 24 - How much work is required to set up the...Ch. 24 - In Fig. 24-53, seven charged particles are fixed...Ch. 24 - ILW A particle of charge q is fixed at point P,...Ch. 24 - A charge of 9.0 nC is uniformly distributed around...Ch. 24 - GO What is the escape speed for an electron...Ch. 24 - A thin, spherical conducting shell of radius R is...Ch. 24 - GO Two electrons are fixed 2.0 cm apart. Another...Ch. 24 - In Fig. 24-54, how much work must we do to bring a...Ch. 24 - GO In the rectangle of Fig. 24-55, the sides have...Ch. 24 - Figure 24-56a shows an electron moving along an...Ch. 24 - Two tiny metal sphere? A and B, mass mA = 5.00 g...Ch. 24 - Prob. 54PCh. 24 - An electron is projected with an initial speed of...Ch. 24 - Particle 1 with a charge of 5.0 C and particle 2...Ch. 24 - SSM Identical 50 C charges are fixed or an x axis...Ch. 24 - GO Proton in a well. Figure 24-59 shows electric...Ch. 24 - In Fig. 24-60, a charged particle either an...Ch. 24 - In Fig. 24-61a, we move an electron from an...Ch. 24 - Suppose N electrons can be placed in either of two...Ch. 24 - Sphere 1 with radius R1 has positive charge q....Ch. 24 - SSM WWW Two metal spheres, each of radius 3.0 cm,...Ch. 24 - A hollow metal sphere has a potential of 400 V...Ch. 24 - SSM What is the excess charge on a conducting...Ch. 24 - Two isolated, concentric, conducting spherical...Ch. 24 - A metal sphere of radius 15 cm has a net charge of...Ch. 24 - Here are the charges and coordinates of two...Ch. 24 - SSM A long, solid, conducting cylinder has a...Ch. 24 - The chocolate crumb mystery. This story begins...Ch. 24 - SSM Starting from Eq. 24-30, derive an expression...Ch. 24 - The magnitude E of an electric field depends on...Ch. 24 - a If an isolated conducting sphere 10 cm in radius...Ch. 24 - Three particles, charge q1 = 10 C, q2 = 20 C, and...Ch. 24 - An electric field of approximately 100 V/m is...Ch. 24 - A Gaussian sphere of radius 4.00 cm is centered or...Ch. 24 - In a Millikan oil-drop experiment Module 22-6, a...Ch. 24 - Figure 24-63 shows three circular, nonconducting...Ch. 24 - An electron is released from rest on the axis of...Ch. 24 - Figure 24-64 shows a ring of outer radius R = 13.0...Ch. 24 - GO Electron in a well. Figure 24-65 shows electric...Ch. 24 - a If Earth had a uniform surface charge density of...Ch. 24 - Prob. 83PCh. 24 - A solid conducting sphere of radius 3.0 cm has a...Ch. 24 - In Fig. 24-67, we move a particle of charge 2e in...Ch. 24 - Figure 24-68 shows a hemisphere with a charge of...Ch. 24 - SSM Three 0.12 C charges form an equilateral...Ch. 24 - Two charges q = 2.0 C are fixed a distance d = 2.0...Ch. 24 - Initially two electrons are fixed in place with a...Ch. 24 - A particle of positive charge Q is fixed at point...Ch. 24 - Two charged, parallel, flat conducting surfaces...Ch. 24 - In Fig. 24-70, point P is at the center of the...Ch. 24 - SSM A uniform charge of 16.0 C is on a thin...Ch. 24 - Consider a particle with charge q = 150 108 C,...Ch. 24 - Prob. 95PCh. 24 - A charge q is distributed uniformly throughout a...Ch. 24 - SSM A solid copper sphere whose radius is 1.0 cm...Ch. 24 - In Fig. 24-71, a metal sphere with charge q = 5.00...Ch. 24 - a Using Eq. 24-32, show that the electric...Ch. 24 - An alpha particle which has two protons is seat...Ch. 24 - In the quark model of fundamental particles, a...Ch. 24 - A charge of 1.50 108 C lies on an isolated metal...Ch. 24 - In Fig. 24-72, two particles of charges q1 and q2...
Additional Science Textbook Solutions
Find more solutions based on key concepts
In a rapidly changing environment, which bacterial population would likely be more successful, one that include...
Campbell Biology in Focus (2nd Edition)
What color are Gram-negative organisms after Gram staining? What color are Gram-positive organisms?
Microbiology: Principles and Explorations
All of the following terms can appropriately describe humans except: a. primary consumer b. autotroph c. hetero...
Human Biology: Concepts and Current Issues (8th Edition)
Two culture media were inoculated with four different bacteria. After incubation, the following results were ob...
Microbiology: An Introduction
Match each of the following items with all the terms it applies to:
Human Physiology: An Integrated Approach (8th Edition)
16. ATP is synthesized from ADP, Pi, and a proton on the matrix side of the inner mitochondrial membrane. We wi...
Biochemistry: Concepts and Connections (2nd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- No chatgpt pls will upvotearrow_forwardthe cable may break and cause severe injury. cable is more likely to break as compared to the [1] ds, inclined at angles of 30° and 50° to the vertical rings by way of a scaled diagram. [4] I 30° T₁ 3cm 3.8T2 cm 200 N 50° at it is headed due North and its airspeed indicat 240 km/h. If there is a wind of 100 km/h from We e relative to the Earth? [3]arrow_forwardCan you explain this using nodal analysis With the nodes I have present And then show me how many KCL equations I need to write, I’m thinking 2 since we have 2 dependent sourcesarrow_forward
- The shear leg derrick is used to haul the 200-kg net of fish onto the dock as shown in. Assume the force in each leg acts along its axis. 5.6 m. 4 m- B Part A Determine the compressive force along leg AB. Express your answer to three significant figures and include the appropriate units. FAB = Value Submit Request Answer Part B Units ? Determine the compressive force along leg CB. Express your answer to three significant figures and include the appropriate units. FCB= Value Submit Request Answer Part C ? Units Determine the tension in the winch cable DB. Express your answer with the appropriate units. 2marrow_forwardPart A (Figure 1) shows a bucket suspended from a cable by means of a small pulley at C. If the bucket and its contents have a mass of 10 kg, determine the location of the pulley for equilibrium. The cable is 6 m long. Express your answer to three significant figures and include the appropriate units. Figure 4 m B НА x = Value Submit Request Answer Provide Feedback < 1 of 1 T 1 m Units ?arrow_forwardThe particle in is in equilibrium and F4 = 165 lb. Part A Determine the magnitude of F1. Express your answer in pounds to three significant figures. ΑΣΦ tvec F₁ = Submit Request Answer Part B Determine the magnitude of F2. Express your answer in pounds to three significant figures. ΑΣΦ It vec F2 = Submit Request Answer Part C Determine the magnitude of F3. Express your answer in pounds to three significant figures. ? ? lb lb F₂ 225 lb 135° 45° 30° -60°-arrow_forward
- The 10-lb weight is supported by the cord AC and roller and by the spring that has a stiffness of k = 10 lb/in. and an unstretched length of 12 in. as shown in. Part A Determine the distance d to maintain equilibrium. Express your answer in inches to three significant figures. 節 ΕΠΙ ΑΣΦ d = *k J vec 5 t 0 ? d C A in. 12 in. Barrow_forwardThe members of a truss are connected to the gusset plate as shown in . The forces are concurrent at point O. Take = 90° and T₁ = 7.5 kN. Part A Determine the magnitude of F for equilibrium. Express your answer to three significant figures and include the appropriate units. F = Value Submit Request Answer Part B 0 ? Units Determine the magnitude of T2 for equilibrium. Express your answer to three significant figures and include the appropriate units. ? T₂ = Value Units T₁ Carrow_forwardpls help on botharrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY