
Linear Algebra With Applications (classic Version)
5th Edition
ISBN: 9780135162972
Author: BRETSCHER, OTTO
Publisher: Pearson Education, Inc.,
expand_more
expand_more
format_list_bulleted
Question
Chapter 2.4, Problem 60E
To determine
To find: The matrix is invertible and the inverse of matrix and interpret the transformation and their inverse.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
13) Let U = {j, k, l, m, n, o, p} be the universal set. Let V = {m, o,p), W = {l,o, k}, and X = {j,k). List the elements of
the following sets and the cardinal number of each set.
a) W° and n(W)
b) (VUW) and n((V U W)')
c) VUWUX and n(V U W UX)
d) vnWnX and n(V WnX)
9) Use the Venn Diagram given below to determine the number elements in each of the following sets.
a) n(A).
b) n(A° UBC).
U
B
oh
a
k
gy
ท
W
z r
e t
་
C
10) Find n(K) given that n(T) = 7,n(KT) = 5,n(KUT) = 13.
Chapter 2 Solutions
Linear Algebra With Applications (classic Version)
Ch. 2.1 - GOAL Use the concept of a linear transformation in...Ch. 2.1 - GOAL Use the concept of a linear transformation in...Ch. 2.1 - GOAL Use the concept of a linear transformation in...Ch. 2.1 - Find the matrix of the linear transformation...Ch. 2.1 - Consider the linear transformation T from 3 to 2...Ch. 2.1 - Consider the transformationT from 2 to 3 given by...Ch. 2.1 - Suppose v1,v2...,vm are arbitrary vectors in n...Ch. 2.1 - Find the inverse of the linear transformation...Ch. 2.1 - In Exercises 9 through 12, decide whether the...Ch. 2.1 - In Exercises 9 through 12, decide whether the...
Ch. 2.1 - In Exercises 9 through 12, decide whether the...Ch. 2.1 - In Exercises 9 through 12, decide whether the...Ch. 2.1 - Prove the following facts: a. The 22 matrix...Ch. 2.1 - a. For which values of the constantk is the matrix...Ch. 2.1 - For which values of the constants a and b is the...Ch. 2.1 - Give a geometric interpretation of the linear...Ch. 2.1 - Give a geometric interpretation of the linear...Ch. 2.1 - Give a geometric interpretation of the linear...Ch. 2.1 - Give a geometric interpretation of the linear...Ch. 2.1 - Give a geometric interpretation of the linear...Ch. 2.1 - Give a geometric interpretation of the linear...Ch. 2.1 - Give a geometric interpretation of the linear...Ch. 2.1 - Give a geometric interpretation of the linear...Ch. 2.1 - Consider the circular face in the accompanying...Ch. 2.1 - Consider the circular face in the accompanying...Ch. 2.1 - Consider the circular face in the accompanying...Ch. 2.1 - Consider the circular face in the accompanying...Ch. 2.1 - Consider the circular face in the accompanying...Ch. 2.1 - Consider the circular face in the accompanying...Ch. 2.1 - Consider the circular face in the accompanying...Ch. 2.1 - In Chapter 1, we mentioned that an old German...Ch. 2.1 - Find an nn matrix A such that Ax=3x , for all x in...Ch. 2.1 - Consider the transformation T from 2 to 2...Ch. 2.1 - Consider the transformation T from 2 to 2 that...Ch. 2.1 - In the example about the French coast guard in...Ch. 2.1 - Let T be a linear transformation from 2 to 2 . Let...Ch. 2.1 - Consider a linear transformation T from 2 to 2 ....Ch. 2.1 - The two column vectors v1 and v2 of a 22 matrix A...Ch. 2.1 - Show that if T is a linear transformation from m...Ch. 2.1 - Prob. 40ECh. 2.1 - Prob. 41ECh. 2.1 - When you represent a three-dimensional object...Ch. 2.1 - a. Consider the vector v=[234] . Is the...Ch. 2.1 - The cross product of two vectors in 3 is given by...Ch. 2.1 - Prob. 45ECh. 2.1 - Prob. 46ECh. 2.1 - Prob. 47ECh. 2.1 - Prob. 48ECh. 2.1 - Prove that if A is a transition matrix and x is a...Ch. 2.1 - Prob. 50ECh. 2.1 - Prob. 51ECh. 2.1 - Prob. 52ECh. 2.1 - Prob. 53ECh. 2.1 - Prob. 54ECh. 2.1 - Prob. 55ECh. 2.1 - For each of the, mini-Webs in Exercises 54 through...Ch. 2.1 - Some parking meters in downtown Geneva,...Ch. 2.1 - Prob. 58ECh. 2.1 - Prob. 59ECh. 2.1 - In the financial pages of a newspaper, one can...Ch. 2.1 - Prob. 61ECh. 2.1 - Prob. 62ECh. 2.1 - Prob. 63ECh. 2.1 - Prob. 64ECh. 2.2 - Sketch the image of the standard L under the...Ch. 2.2 - Find the matrix of a rotation through an angle of...Ch. 2.2 - Consider a linear transformation T from 2 to 3 ....Ch. 2.2 - Interpret the following linear transformation...Ch. 2.2 - The matrix [0.80.60.60.8] represents a rotation....Ch. 2.2 - Let L be the line in 3 that consists of all scalar...Ch. 2.2 - Let L be the line in 3 that consists of all scalar...Ch. 2.2 - Interpret the following linear transformation...Ch. 2.2 - Interpret the following linear transformation...Ch. 2.2 - Find the matrix of the orthogonal projection onto...Ch. 2.2 - Refer to Exercise 10. Find the matrix of the...Ch. 2.2 - Consider a reflection matrix A and a vector x in 2...Ch. 2.2 - Suppose a line L in 2 contains the Unit vector...Ch. 2.2 - Suppose a line L in 3 contains the unit vector...Ch. 2.2 - Suppose a line L in 3 contains the unit vector...Ch. 2.2 - Let T(x)=refL(x) be the reflection about the line...Ch. 2.2 - Consider a matrix A of the form A=[abba] , where...Ch. 2.2 - The linear transformation T(x)=[0.60.80.80.6]x is...Ch. 2.2 - Find the matrices of the linear transformations...Ch. 2.2 - Find the matrices of the linear transformations...Ch. 2.2 - Find the matrices of the linear transformations...Ch. 2.2 - Find the matrices of the linear transformations...Ch. 2.2 - Find the matrices of the linear transformations...Ch. 2.2 - Rotations and reflections have two remarkable...Ch. 2.2 - Find the inverse of the matrix [1k01] ,where k is...Ch. 2.2 - a. Find the scaling matrix A that transforms [21]...Ch. 2.2 - Prob. 27ECh. 2.2 - Prob. 28ECh. 2.2 - Prob. 29ECh. 2.2 - Find a nonzero 22 matrix A such that Ax is...Ch. 2.2 - Prob. 31ECh. 2.2 - Consider the rotation matrix D=[cossinsincos] and...Ch. 2.2 - Consider two nonparallel lines L1 and L2 in 2...Ch. 2.2 - One of the five given matrices represents an...Ch. 2.2 - Prob. 35ECh. 2.2 - Prob. 36ECh. 2.2 - Prob. 37ECh. 2.2 - The determinant of a matrix [abcd] is adbc (wehave...Ch. 2.2 - Describe each of the linear transformations...Ch. 2.2 - Prob. 40ECh. 2.2 - Prob. 41ECh. 2.2 - Prob. 42ECh. 2.2 - Prob. 43ECh. 2.2 - A nonzero matrix of the form A=[abba] represents a...Ch. 2.2 - Prob. 45ECh. 2.2 - A nonzero matrix of the form A=[abba] represents a...Ch. 2.2 - Prob. 47ECh. 2.2 - Prob. 48ECh. 2.2 - Prob. 49ECh. 2.2 - Prob. 50ECh. 2.2 - Prob. 51ECh. 2.2 - Prob. 52ECh. 2.2 - Sketch the image of the unit circle under the...Ch. 2.2 - Prob. 54ECh. 2.2 - Prob. 55ECh. 2.2 - Consider an invertible linear transformation T...Ch. 2.3 - If possible, compute the matrix products in...Ch. 2.3 - If possible, compute the matrix products in...Ch. 2.3 - If possible, compute the matrix products in...Ch. 2.3 - If possible, compute the matrix products in...Ch. 2.3 - If possible, compute the matrix products in...Ch. 2.3 - If possible, compute the matrix products in...Ch. 2.3 - If possible, compute the matrix products in...Ch. 2.3 - If possible, compute the matrix products in...Ch. 2.3 - If possible, compute the matrix products in...Ch. 2.3 - If possible, compute the matrix products in...Ch. 2.3 - If possible, compute the matrix products in...Ch. 2.3 - If possible, compute the matrix products in...Ch. 2.3 - If possible, compute the matrix products in...Ch. 2.3 - For the matrices A=[ 1 1 1 1],B=[ 1 2 3],C=[ 1 0 1...Ch. 2.3 - Prob. 15ECh. 2.3 - Prob. 16ECh. 2.3 - In the Exercises 17 through 26,find all matrices...Ch. 2.3 - In the Exercises 17 through 26, find all matrices...Ch. 2.3 - In the Exercises 17 through 26, find all matrices...Ch. 2.3 - In the Exercises 17 through 26, find all matrices...Ch. 2.3 - In the Exercises 17 through 26, find all matrices...Ch. 2.3 - In the Exercises 17 through 26, find all matrices...Ch. 2.3 - In the Exercises 17 through 26, find all matrices...Ch. 2.3 - In the Exercises 17 through 26, find all matrices...Ch. 2.3 - In the Exercises 17 through 26, find all matrices...Ch. 2.3 - In the Exercises 17 through 26, find all matrices...Ch. 2.3 - Prove the distributive laws for matrices:...Ch. 2.3 - Consider an np matrix A, a pm in matrix B, and...Ch. 2.3 - Consider the matrix D=[cossinsincos] . We know...Ch. 2.3 - Consider the lines P and Q in 2 in the...Ch. 2.3 - Consider two matrices A and B whose product ABis...Ch. 2.3 - Prob. 32ECh. 2.3 - For the matrices A in Exercises 33 through 42,...Ch. 2.3 - For the matrices A in Exercises 33 through 42,...Ch. 2.3 - For the matrices A in Exercises 33 through 42,...Ch. 2.3 - For the matrices A in Exercises 33 through 42,...Ch. 2.3 - For the matrices A in Exercises 33 through 42,...Ch. 2.3 - For the matrices A in Exercises 33 through 42,...Ch. 2.3 - For the matrices A in Exercises 33 through 42,...Ch. 2.3 - For the matrices A in Exercises 33 through 42,...Ch. 2.3 - For the matrices A in Exercises 33 through 42,...Ch. 2.3 - For the matrices A in Exercises 33 through 42,...Ch. 2.3 - In Exercises 43 through 48, find a 22matrix A with...Ch. 2.3 - In Exercises 43 through 48, find a 22matrix A with...Ch. 2.3 - In Exercises 43 through 48, find a 22matrix A with...Ch. 2.3 - In Exercises 43 through 48, find a 22matrix A with...Ch. 2.3 - In Exercises 43 through 48, find a 22matrix A with...Ch. 2.3 - In Exercises 43 through 48, find a 22matrix A with...Ch. 2.3 - In Exercises 49 through 54, consider the matrices...Ch. 2.3 - In Exercises 49 through 54, consider the matrices...Ch. 2.3 - In Exercises 49 through 54, consider the matrices...Ch. 2.3 - Prob. 52ECh. 2.3 - Prob. 53ECh. 2.3 - Prob. 54ECh. 2.3 - In Exercises 55 through 64,find all matrices X...Ch. 2.3 - In Exercises 55 through 64, find all matrices X...Ch. 2.3 - In Exercises 55 through 64, find all matrices X...Ch. 2.3 - In Exercises 55 through 64, find all matrices X...Ch. 2.3 - In Exercises 55 through 64, find all matrices X...Ch. 2.3 - In Exercises 55 through 64, find all matrices X...Ch. 2.3 - In Exercises 55 through 64, find all matrices X...Ch. 2.3 - In Exercises 55 through 64, find all matrices X...Ch. 2.3 - In Exercises 55 through 64, find all matrices X...Ch. 2.3 - In Exercises 55 through 64, find all matrices X...Ch. 2.3 - Find all upper triangular 22 matrices X such that...Ch. 2.3 - Find all lower triangular 33 matrices X such that...Ch. 2.3 - Prob. 67ECh. 2.3 - Prob. 68ECh. 2.3 - Consider the matrix A2 in Example 4 of Section...Ch. 2.3 - a. Compute A3 for the matrix A in Example 2.3.4....Ch. 2.3 - For the mini-Web in Example 2.3.4, find pages i...Ch. 2.3 - Prob. 72ECh. 2.3 - Prob. 73ECh. 2.3 - Prob. 74ECh. 2.3 - Prob. 75ECh. 2.3 - Prob. 76ECh. 2.3 - Prob. 77ECh. 2.3 - Prob. 78ECh. 2.3 - Prob. 79ECh. 2.3 - Prob. 80ECh. 2.3 - Prob. 81ECh. 2.3 - Prob. 82ECh. 2.3 - Prob. 83ECh. 2.3 - Prob. 84ECh. 2.3 - Prob. 85ECh. 2.4 - Decide whether the matrices in Exercises 1 through...Ch. 2.4 - Decide whether the matrices in Exercises 1 through...Ch. 2.4 - Decide whether the matrices in Exercises 1 through...Ch. 2.4 - Decide whether the matrices in Exercises 1 through...Ch. 2.4 - Decide whether the matrices in Exercises 1 through...Ch. 2.4 - Decide whether the matrices in Exercises 1 through...Ch. 2.4 - Decide whether the matrices in Exercises 1 through...Ch. 2.4 - Decide whether the matrices in Exercises 1 through...Ch. 2.4 - Decide whether the matrices in Exercises 1 through...Ch. 2.4 - Decide whether the matrices in Exercises 1 through...Ch. 2.4 - Decide whether the matrices in Exercises 1 through...Ch. 2.4 - Decide whether the matrices in Exercises 1 through...Ch. 2.4 - Decide whether the matrices in Exercises 1 through...Ch. 2.4 - Decide whether the matrices in Exercises 1 through...Ch. 2.4 - Decide whether the matrices in Exercises 1 through...Ch. 2.4 - Prob. 16ECh. 2.4 - Prob. 17ECh. 2.4 - Prob. 18ECh. 2.4 - Decide whether the linear transformations in...Ch. 2.4 - Decide whether the linear transformations in...Ch. 2.4 - Which of the functions f from to in Exercises 21...Ch. 2.4 - Which of the functions f from to in Exercises 21...Ch. 2.4 - Which of the functions f from to in Exercises 21...Ch. 2.4 - Which of the functions f from to in Exercises 21...Ch. 2.4 - Which of the (nonlinear) tranformtions from 2to...Ch. 2.4 - Which of the (nonlinear) tranformtions from 2to...Ch. 2.4 - Which of the (nonlinear) tranformtions from 2to...Ch. 2.4 - Find the inverse of the linear transformation...Ch. 2.4 - For which values of the constant k is the...Ch. 2.4 - For which values of the constants h and c is the...Ch. 2.4 - For which values of the constants a, b, and c is...Ch. 2.4 - Find all matrices [abcd] such that adbc=1 and A1=A...Ch. 2.4 - Consider the matrices of the form A=[abba] ,where...Ch. 2.4 - Consider the diagonal matrix A=[a000b000c] . a....Ch. 2.4 - Consider the upper triangular 33 matrix...Ch. 2.4 - To determine whether a square matrix A is...Ch. 2.4 - If A is an invertible matrix and c is a nonzero...Ch. 2.4 - Find A1 for A=[1k01] .Ch. 2.4 - Consider a square matrix that differs from the...Ch. 2.4 - Show that if a square matrix A has two equal...Ch. 2.4 - Which of the following linear transformations T...Ch. 2.4 - A square matrix is called a permutation matrix if...Ch. 2.4 - Consider two invertible nn matrices A and B. Is...Ch. 2.4 - Consider the nn matrix Mn , with n2 , that...Ch. 2.4 - To gauge the complexity of a computational task,...Ch. 2.4 - Consider the linear system Ax=b ,where A is an...Ch. 2.4 - Give an example of a noninvertible function f from...Ch. 2.4 - Consider an invertible linear transformation...Ch. 2.4 - Input-Output Analysis. (This exercise builds on...Ch. 2.4 - This exercise refers to exercise 49a. Consider the...Ch. 2.4 - Prob. 51ECh. 2.4 - Prob. 52ECh. 2.4 - Prob. 53ECh. 2.4 - Prob. 54ECh. 2.4 - Prob. 55ECh. 2.4 - Prob. 56ECh. 2.4 - Prob. 57ECh. 2.4 - Prob. 58ECh. 2.4 - Prob. 59ECh. 2.4 - Prob. 60ECh. 2.4 - Prob. 61ECh. 2.4 - In Exercises 55 through 65, show that the given...Ch. 2.4 - Prob. 63ECh. 2.4 - Prob. 64ECh. 2.4 - Prob. 65ECh. 2.4 - Prob. 66ECh. 2.4 - Prob. 67ECh. 2.4 - For two invertible nnmatrices A and B, determine...Ch. 2.4 - Prob. 69ECh. 2.4 - For two invertible nnmatrices A and B, determine...Ch. 2.4 - Prob. 71ECh. 2.4 - Prob. 72ECh. 2.4 - Prob. 73ECh. 2.4 - Prob. 74ECh. 2.4 - For two invertible nnmatrices A and B, determine...Ch. 2.4 - Find all linear transformations T from 2 to 2...Ch. 2.4 - Prob. 77ECh. 2.4 - Prob. 78ECh. 2.4 - Prob. 79ECh. 2.4 - Consider the regular tetrahedron sketched below,...Ch. 2.4 - Find the matrices of the transformations T and L...Ch. 2.4 - Consider the matrix E=[100310001] and an arbitrary...Ch. 2.4 - Are elementary matrices invertible? If so, is the...Ch. 2.4 - a. Justify the following: If A is an nm in matrix,...Ch. 2.4 - a. Justify the following: If A is an nm...Ch. 2.4 - a. Justify the following: Any invertible matrix is...Ch. 2.4 - Write all possible forms of elementary...Ch. 2.4 - Prob. 88ECh. 2.4 - Prob. 89ECh. 2.4 - Prob. 90ECh. 2.4 - Prob. 91ECh. 2.4 - Show that the matrix A=[0110] cannot be written...Ch. 2.4 - In this exercise we will examine which invertible...Ch. 2.4 - Prob. 94ECh. 2.4 - Prob. 95ECh. 2.4 - Prob. 96ECh. 2.4 - Prob. 97ECh. 2.4 - Prob. 98ECh. 2.4 - Prob. 99ECh. 2.4 - Prob. 100ECh. 2.4 - Prob. 101ECh. 2.4 - Prob. 102ECh. 2.4 - Prob. 103ECh. 2.4 - The color of light can be represented in a vector...Ch. 2.4 - Prob. 105ECh. 2.4 - Prob. 106ECh. 2.4 - Prob. 107ECh. 2.4 - Prob. 108ECh. 2 - The matrix [5665] represents a rotation...Ch. 2 - If A is any invertible nn matrix, then A...Ch. 2 - Prob. 3ECh. 2 - Matrix [1/21/21/21/2] represents a rotation.Ch. 2 - Prob. 5ECh. 2 - Prob. 6ECh. 2 - Prob. 7ECh. 2 - Prob. 8ECh. 2 - Prob. 9ECh. 2 - Prob. 10ECh. 2 - Matrix [k25k6] is invertible for all real numbers...Ch. 2 - There exists a real number k such that the matrix...Ch. 2 - Prob. 13ECh. 2 - Prob. 14ECh. 2 - Prob. 15ECh. 2 - Prob. 16ECh. 2 - Prob. 17ECh. 2 - Prob. 18ECh. 2 - Prob. 19ECh. 2 - Prob. 20ECh. 2 - Prob. 21ECh. 2 - Prob. 22ECh. 2 - Prob. 23ECh. 2 - There exists a matrix A such that [1212]A=[1111] .Ch. 2 - Prob. 25ECh. 2 - Prob. 26ECh. 2 - Prob. 27ECh. 2 - There exists a nonzero upper triangular 22 matrix...Ch. 2 - Prob. 29ECh. 2 - Prob. 30ECh. 2 - Prob. 31ECh. 2 - Prob. 32ECh. 2 - Prob. 33ECh. 2 - If A2 is invertible, then matrix A itself must be...Ch. 2 - Prob. 35ECh. 2 - Prob. 36ECh. 2 - Prob. 37ECh. 2 - Prob. 38ECh. 2 - Prob. 39ECh. 2 - Prob. 40ECh. 2 - Prob. 41ECh. 2 - Prob. 42ECh. 2 - Prob. 43ECh. 2 - Prob. 44ECh. 2 - Prob. 45ECh. 2 - Prob. 46ECh. 2 - Prob. 47ECh. 2 - Prob. 48ECh. 2 - Prob. 49ECh. 2 - Prob. 50ECh. 2 - Prob. 51ECh. 2 - Prob. 52ECh. 2 - Prob. 53ECh. 2 - Prob. 54ECh. 2 - Prob. 55ECh. 2 - Prob. 56ECh. 2 - Prob. 57ECh. 2 - Prob. 58ECh. 2 - Prob. 59ECh. 2 - Prob. 60ECh. 2 - Prob. 61ECh. 2 - For every transition matrix A there exists a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.Similar questions
- 7) Use the Venn Diagram below to determine the sets A, B, and U. A = B = U = Blue Orange white Yellow Black Pink Purple green Grey brown Uarrow_forward8) Use the Venn diagram provided to shade An Bº. A B U Darrow_forward5) Describe the difference between disjoint sets and overlapping sets.arrow_forward
- 12) Suppose U = {a,b,c,d,e) and A = {a, b, c, e) and B = (c,d,e). Determine (An B).arrow_forward1) Use the roster method to list the elements of the set consisting of: a) All positive multiples of 3 that are less than 20. b) Nothing (An empty set).arrow_forward2) Let M = {all postive integers), N = {0,1,2,3... 100), 0= {100,200,300,400,500). Determine if the following statements are true or false and explain your reasoning. a) NCM b) 0 C M c) O and N have at least one element in common d) O≤ N e) o≤o 1arrow_forward
- 4) Which of the following universal sets has W = {12,79, 44, 18) as a subset? Choose one. a) T = {12,9,76,333, 44, 99, 1000, 2} b) V = {44,76, 12, 99, 18,900,79,2} c) Y = {76,90, 800, 44, 99, 55, 22} d) x = {79,66,71, 4, 18, 22,99,2}arrow_forward3) What is the universal set that contains all possible integers from 1 to 8 inclusive? Choose one. a) A = {1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8} b) B={-1,0,1,2,3,4,5,6,7,8} c) C={1,2,3,4,5,6,7,8} d) D = {0,1,2,3,4,5,6,7,8}arrow_forward5) 8.4 6.3 ?arrow_forward
- Wendy is looking over some data regarding the strength, measured in Pascals (Pa), of some rope and how the strength relates to the number of woven strands in the rope. The data are represented by the exponential function f(x) = 2x, where x is the number of woven strands. Explain how she can convert this equation to a logarithmic function when strength is 256 Pascals. Please type out answerarrow_forwardHarrison and Sherrie are making decisions about their bank accounts. Harrison wants to deposit $200 as a principal amount, with an interest of 2% compounded quarterly. Sherrie wants to deposit $200 as the principal amount, with an interest of 4% compounded monthly. Explain which method results in more money after 2 years. Show all work. Please type out answerarrow_forwardMike is working on solving the exponential equation 37x = 12; however, he is not quite sure where to start. Solve the equation and use complete sentences to describe the steps to solve. Hint: Use the change of base formula: log y = log y log barrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning

Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:9781305658004
Author:Ron Larson
Publisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage

Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Linear Transformations on Vector Spaces; Author: Professor Dave Explains;https://www.youtube.com/watch?v=is1cg5yhdds;License: Standard YouTube License, CC-BY
Linear Equation | Solving Linear Equations | What is Linear Equation in one variable ?; Author: Najam Academy;https://www.youtube.com/watch?v=tHm3X_Ta_iE;License: Standard YouTube License, CC-BY