Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
9th Edition
ISBN: 9781305266292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 24, Problem 5P
(a)
To determine
The electric flux through given plane parallel to y-z plane.
(b)
To determine
The electric flux through given plane which is parallel to x-y plane.
(c)
To determine
The electric flux through given plane, which makes an angle
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An electric field of magnitude 350 N/C is applied along the Xx.
Calculate the Electric flux through a rectangular plane 0.50 m wide
and 0.80 m long
(a) if the plane is parallel to the yz plane,
(b) if the plane is parallel to the xy plane, and
(c) if the plane contains the y axis and its normal makes an angle of
50.0 with the x axis.
A uniform electric field of magnitude 25.6 N/C is parallel to the x axis. A circular loop of radius 16.7 cm is centered at the origin with the normal to the loop pointing 52.9* above the x axis. To what angle, in degrees from the positive x axis, should the normal of the loop be rotated so that the flux through the loop becomes 0.314 N - m-/C?
An electric field has a uniform value (doesn't change with position) that can be
described by the following equation:
E = (Aĵ + B k) N/C
where A and B are given by the values below.
A = 1.35
B = 1.80
There is a flat circular surface that is in the x-y plane and centered at the origin point
(0,0,0). This surface has a radius of 1.65 m.
Calculate the magnitude of the electric flux through the surface due to the electric
field described above. Your units should be Nm²/C.
Chapter 24 Solutions
Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
Ch. 24.1 - Suppose a point charge is located at the center of...Ch. 24.2 - If the net flux through a gaussian surface is...Ch. 24 - Prob. 1OQCh. 24 - Prob. 2OQCh. 24 - Prob. 3OQCh. 24 - Prob. 4OQCh. 24 - Prob. 5OQCh. 24 - Prob. 6OQCh. 24 - Prob. 7OQCh. 24 - Prob. 8OQ
Ch. 24 - Prob. 9OQCh. 24 - Prob. 10OQCh. 24 - Prob. 11OQCh. 24 - Prob. 1CQCh. 24 - Prob. 2CQCh. 24 - Prob. 3CQCh. 24 - Prob. 4CQCh. 24 - Prob. 5CQCh. 24 - Prob. 6CQCh. 24 - Prob. 7CQCh. 24 - Prob. 8CQCh. 24 - Prob. 9CQCh. 24 - Prob. 10CQCh. 24 - Prob. 11CQCh. 24 - A flat surface of area 3.20 m2 is rotated in a...Ch. 24 - A vertical electric field of magnitude 2.00 104...Ch. 24 - Prob. 3PCh. 24 - Prob. 4PCh. 24 - Prob. 5PCh. 24 - A nonuniform electric field is given by the...Ch. 24 - An uncharged, nonconducting, hollow sphere of...Ch. 24 - Prob. 8PCh. 24 - Prob. 9PCh. 24 - Prob. 10PCh. 24 - Prob. 11PCh. 24 - A charge of 170 C is at the center of a cube of...Ch. 24 - Prob. 13PCh. 24 - A particle with charge of 12.0 C is placed at the...Ch. 24 - Prob. 15PCh. 24 - Prob. 16PCh. 24 - Prob. 17PCh. 24 - Find the net electric flux through (a) the closed...Ch. 24 - Prob. 19PCh. 24 - Prob. 20PCh. 24 - Prob. 21PCh. 24 - Prob. 22PCh. 24 - Prob. 23PCh. 24 - Prob. 24PCh. 24 - Prob. 25PCh. 24 - Determine the magnitude of the electric field at...Ch. 24 - A large, flat, horizontal sheet of charge has a...Ch. 24 - Prob. 28PCh. 24 - Prob. 29PCh. 24 - A nonconducting wall carries charge with a uniform...Ch. 24 - A uniformly charged, straight filament 7.00 m in...Ch. 24 - Prob. 32PCh. 24 - Consider a long, cylindrical charge distribution...Ch. 24 - A cylindrical shell of radius 7.00 cm and length...Ch. 24 - A solid sphere of radius 40.0 cm has a total...Ch. 24 - Prob. 36PCh. 24 - Prob. 37PCh. 24 - Why is the following situation impossible? A solid...Ch. 24 - A solid metallic sphere of radius a carries total...Ch. 24 - Prob. 40PCh. 24 - A very large, thin, flat plate of aluminum of area...Ch. 24 - Prob. 42PCh. 24 - Prob. 43PCh. 24 - Prob. 44PCh. 24 - A long, straight wire is surrounded by a hollow...Ch. 24 - Prob. 46PCh. 24 - Prob. 47PCh. 24 - Prob. 48APCh. 24 - Prob. 49APCh. 24 - Prob. 50APCh. 24 - Prob. 51APCh. 24 - Prob. 52APCh. 24 - Prob. 53APCh. 24 - Prob. 54APCh. 24 - Prob. 55APCh. 24 - Prob. 56APCh. 24 - Prob. 57APCh. 24 - An insulating solid sphere of radius a has a...Ch. 24 - Prob. 59APCh. 24 - Prob. 60APCh. 24 - Prob. 61CPCh. 24 - Prob. 62CPCh. 24 - Prob. 63CPCh. 24 - Prob. 64CPCh. 24 - Prob. 65CPCh. 24 - A solid insulating sphere of radius R has a...Ch. 24 - Prob. 67CPCh. 24 - Prob. 68CPCh. 24 - Prob. 69CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The electric field 10.0 cm from the surface of a copper ball of radius 5.0 cm is directed toward the ball's center and has magnitude 4.0102 N/C. How much charge is on the surface of the ball?arrow_forwardA disk of radius 196 mm is oriented with its normal unit vector n̂ at 60º to a uniform electric field of magnitude 5.87 x 103 N/C. (a)What is the electric flux through the disk? (b) What is the flux through the disk if n̂ is parallel toarrow_forwardAn electric field of magnitude 3.27 kN/C is applied along the x axis. Calculate the electric flux through a rectangular plane 0.350 m wide and 0.700 m long if the following conditions are true. (a) The plane is parallel to the yz plane. (b) The plane is parallel to the xy plane. (c) The plane contains the y axis, and its normal makes an angle of 38.3° with the x axis.arrow_forward
- A solid insulating sphere of radius a=5.0 cm carries a net positive charge of Q=6.0 µC uniformly distributed throughout its volume. Concentric with this sphere is a conducting spherical shell with inner radius b=10 cm and outer radius c=15 cm and having net charge Q2= -8 µC, as shown. The electric field at a point r=12 cm from the center is: Insulator Conductor O 1.3×106 N/C O 3.8×106 N/C 5.0x106 N/C zeroarrow_forwardIn Fig. 1, a thin glass rod forms a semicircle of radius r= 10.00 cm. Charge is uniformly distributed along the rod, with q = 20.00 mC in the upper half and q=-20.00 mC in the lower half. What are the (a) magnitude and (b) direction (relative to the positive direction of the x axis) of the electric field at P, the center of the semicircle fig.1 +q P -9arrow_forwardA square surface of side length L and parallel to the y-z plane is situated in an electric field given by E(x, y, z) = E[i+ a(yj + zk)/V(y + z) ]. The square's sides are parallel to the y- and z-axes and it is centered on the x-axis at position Py. Its normal vector points in the positive x-direction. a is a unitless constant. Refer to the figure. The x-axis points out of the screen. Pr Part (a) Integrate to find an expression for the total electric flux through the square surface in terms of defined quantities and enter the expression. Part (b) For L = 8.2 m, E, = 309.9 V/m, and a = 9.9, find the value of the flux, in units of volt•meter.arrow_forward
- A disk of radius 132mm is oriented with its normal unit vector at 30 degrees to a uniform electric field E of magnitude 2.23x10^3 N/C. (a) what is the electric flux through the disk? (b) What is the flux through the disk if n is parallel to Earrow_forwardThe electric field of a thin uniformly charged disk of radius 2.5 m very close to disk center is 263 N/C. The disk is centered on the xy plane. Calculate the magnitude of the electric field ( in N/C) on the z-axis at a distance 4 m from the center of the disk.arrow_forwardcan you please ans (a) & (b)?arrow_forward
- A uniform electric field of magnitude E = 26 N/C points along the x-axis. A circular loop of radius R = 14 cm is centered at the origin with the normal to the loop pointing 0 = 15 degrees above the x-axis. Calculate the electric flux in units of N·m²/C that passes through the loop.arrow_forwardProblem 3: The electric field in a certain region is given by the function E = Ak cos (kx) cos (by) i – Ab sin (kx) sin (by) where A = 18.06 N-m/C, k = 0.702 m ¹, and b = 1.29 m¹. The points in the figure use the values 1 1.5 m and u₁= 3.36 m. Part (a) What is the change in electric potential, in volts, from point (0, 0) to point (x₁, 0)? V(x₁,0) - V(0, 0) = Part (b) What is the change in potential, in volts, from point (x₁, 0) to point (x₁.y₁)? V(x1.₁) - V(x₁.0)=1 V V V (0,y₁) Part (c) What is the change in potential, in volts, from point (0, 0) to point (₁. ₁), along the path that passes through (x₁, 0)? V(x₁, y₁) - V(0, 0) = (0,0) (x₁₂V₁) (x₁,0)arrow_forwardSuppose the electric field of 5.00 N/C in the z-direction is tilted 60° away from the positive z-direction through a rectangle with area 4.00 m^2 in the xy-plane. Calculate the magnitude of the flux through the same area.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY