Cost of Transporting Goods A trucking company transports goods between Chicago and New York, a distance of 960 miles. The company’s policy is to charge, for each pound, $ 0.50 per mile for the first 100 miles, $ 0.40 per mile for the next 300 miles, $ 0.25 per mile for the next 400 miles, and no charge for the remaining 160 miles. (a) Graph the relationship between the cost of transportation in dollars and mileage over the entire 960-mile route. (b) Find the cost as a function of mileage for hauls between 100 and 400 miles from Chicago. (c) Find the cost as a function of mileage for hauls between 400 and 800 miles from Chicago.
Cost of Transporting Goods A trucking company transports goods between Chicago and New York, a distance of 960 miles. The company’s policy is to charge, for each pound, $ 0.50 per mile for the first 100 miles, $ 0.40 per mile for the next 300 miles, $ 0.25 per mile for the next 400 miles, and no charge for the remaining 160 miles. (a) Graph the relationship between the cost of transportation in dollars and mileage over the entire 960-mile route. (b) Find the cost as a function of mileage for hauls between 100 and 400 miles from Chicago. (c) Find the cost as a function of mileage for hauls between 400 and 800 miles from Chicago.
Cost of Transporting Goods
A trucking company transports goods between Chicago and New York, a distance of 960 miles. The company’s policy is to charge, for each pound,
per mile for the first 100 miles,
per mile for the next 300 miles,
per mile for the next 400 miles, and no charge for the remaining 160 miles.
(a) Graph the relationship between the cost of transportation in dollars and mileage over the entire 960-mile route.
(b) Find the cost as a function of mileage for hauls between 100 and 400 miles from Chicago.
(c) Find the cost as a function of mileage for hauls between 400 and 800 miles from Chicago.
Consider the function f(x) = x²-1.
(a) Find the instantaneous rate of change of f(x) at x=1 using the definition of the derivative.
Show all your steps clearly.
(b) Sketch the graph of f(x) around x = 1. Draw the secant line passing through the points on the
graph where x 1 and x->
1+h (for a small positive value of h, illustrate conceptually). Then,
draw the tangent line to the graph at x=1. Explain how the slope of the tangent line relates to the
value you found in part (a).
(c) In a few sentences, explain what the instantaneous rate of change of f(x) at x = 1 represents in
the context of the graph of f(x). How does the rate of change of this function vary at different
points?
1. The graph of ƒ is given. Use the graph to evaluate each of the following values. If a value does not exist,
state that fact.
и
(a) f'(-5)
(b) f'(-3)
(c) f'(0)
(d) f'(5)
2. Find an equation of the tangent line to the graph of y = g(x) at x = 5 if g(5) = −3 and g'(5)
=
4.
-
3. If an equation of the tangent line to the graph of y = f(x) at the point where x 2 is y = 4x — 5, find ƒ(2)
and f'(2).
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Continuous Probability Distributions - Basic Introduction; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=QxqxdQ_g2uw;License: Standard YouTube License, CC-BY
Probability Density Function (p.d.f.) Finding k (Part 1) | ExamSolutions; Author: ExamSolutions;https://www.youtube.com/watch?v=RsuS2ehsTDM;License: Standard YouTube License, CC-BY
Find the value of k so that the Function is a Probability Density Function; Author: The Math Sorcerer;https://www.youtube.com/watch?v=QqoCZWrVnbA;License: Standard Youtube License