Physics: Principles with Applications
7th Edition
ISBN: 9780321625922
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 24, Problem 55P
A uniform thin film of alcohol (n= 1.36) lies on a flat glass plate (n= 1.56). When monochromatic light, whose wavelength can be changed, is incident normally, the reflected light is a minimum for λ=525nm and a maximum for λ= 655 nm What is the minimum thickness of the film?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 24 Solutions
Physics: Principles with Applications
Ch. 24 - Prob. 1OQCh. 24 - Prob. 1QCh. 24 - Prob. 2QCh. 24 - Prob. 3QCh. 24 - Prob. 4QCh. 24 - Prob. 5QCh. 24 - Prob. 6QCh. 24 - Prob. 7QCh. 24 - Prob. 8QCh. 24 - Prob. 9Q
Ch. 24 - Prob. 10QCh. 24 - Prob. 11QCh. 24 - Prob. 12QCh. 24 - Prob. 13QCh. 24 - Prob. 14QCh. 24 - Prob. 15QCh. 24 - Prob. 16QCh. 24 - Prob. 17QCh. 24 - Prob. 18QCh. 24 - Prob. 19QCh. 24 - Prob. 20QCh. 24 - Prob. 21QCh. 24 - Prob. 22QCh. 24 - Prob. 23QCh. 24 - 24.‘If the Earth's atmosphere were 50 times denser...Ch. 24 - Prob. 1MCQCh. 24 - Prob. 2MCQCh. 24 - Prob. 3MCQCh. 24 - Prob. 4MCQCh. 24 - Prob. 5MCQCh. 24 - Prob. 6MCQCh. 24 - Prob. 7MCQCh. 24 - Prob. 8MCQCh. 24 - Prob. 9MCQCh. 24 - Prob. 10MCQCh. 24 - Prob. 11MCQCh. 24 - Prob. 12MCQCh. 24 - Prob. 1PCh. 24 - Prob. 2PCh. 24 - Prob. 3PCh. 24 - Prob. 4PCh. 24 - Prob. 5PCh. 24 - Prob. 6PCh. 24 - Prob. 7PCh. 24 - Prob. 8PCh. 24 - Prob. 9PCh. 24 - Prob. 10PCh. 24 - Prob. 11PCh. 24 - Prob. 12PCh. 24 - Two narrow slits separated by 1.0 mm are...Ch. 24 - Prob. 14PCh. 24 - Prob. 15PCh. 24 - Light of wavelength 470 nm in air shines on two...Ch. 24 - Prob. 17PCh. 24 - Prob. 18PCh. 24 - Alight beam strikes a piece of glass at a 65.00°...Ch. 24 - Prob. 20PCh. 24 - If 680-nm light falls on a slit 0.0425 mm wide,...Ch. 24 - Prob. 22PCh. 24 - Prob. 23PCh. 24 - A single slit 1.0 mm wide is illuminated by 450-nm...Ch. 24 - Prob. 25PCh. 24 - Prob. 26PCh. 24 - Prob. 27PCh. 24 - 28. (II) Light of wavelength 620 nm falls on a...Ch. 24 - Prob. 29PCh. 24 - Prob. 30PCh. 24 - Prob. 31PCh. 24 - Prob. 32PCh. 24 - Prob. 33PCh. 24 - A grating has 7400 slits/cm. How many spectral...Ch. 24 - Prob. 35PCh. 24 - Prob. 36PCh. 24 - Prob. 37PCh. 24 - White light containing wavelengths from 410 nm to...Ch. 24 - A diffraction grating has 6.5 ×105 slits/m. Find...Ch. 24 - Prob. 40PCh. 24 - Prob. 41PCh. 24 - Prob. 42PCh. 24 - Prob. 43PCh. 24 - If a soap bubble is 120 nm thick, what wavelength...Ch. 24 - Prob. 45PCh. 24 - 46. (II) (a) What is the smallest thickness of a...Ch. 24 - Prob. 47PCh. 24 - Prob. 48PCh. 24 - How many uncoated thin lenses in an optical...Ch. 24 - Prob. 50PCh. 24 - Prob. 51PCh. 24 - Prob. 52PCh. 24 - How thick (minimum) should the air layer be...Ch. 24 - Prob. 54PCh. 24 - A uniform thin film of alcohol (n= 1.36) lies on a...Ch. 24 - How far must the mirror M1in a Michelson...Ch. 24 - Prob. 57PCh. 24 - Prob. 58PCh. 24 - Prob. 59PCh. 24 - Prob. 60PCh. 24 - Prob. 61PCh. 24 - Prob. 62PCh. 24 - Prob. 63PCh. 24 - Prob. 64PCh. 24 - Prob. 65PCh. 24 - Two polaroids are aligned so that the initially...Ch. 24 - Prob. 67PCh. 24 - Prob. 68PCh. 24 - Prob. 69PCh. 24 - Prob. 70PCh. 24 - Prob. 71PCh. 24 - Prob. 72PCh. 24 - Prob. 73GPCh. 24 - Prob. 74GPCh. 24 - Prob. 75GPCh. 24 - Prob. 76GPCh. 24 - Prob. 77GPCh. 24 - Prob. 78GPCh. 24 - Prob. 79GPCh. 24 - Prob. 80GPCh. 24 - Calculate the minimum thickness needed for an...Ch. 24 - Prob. 82GPCh. 24 - Prob. 83GPCh. 24 - Prob. 84GPCh. 24 - Prob. 85GPCh. 24 - Prob. 86GPCh. 24 - The wings of a certain beetle have a series of...Ch. 24 - Prob. 88GPCh. 24 - Prob. 89GPCh. 24 - Prob. 90GPCh. 24 - Prob. 91GPCh. 24 - Prob. 92GPCh. 24 - Prob. 93GPCh. 24 - Prob. 94GPCh. 24 - Prob. 95GPCh. 24 - Prob. 96GP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In Figure P36.10 (not to scale), let L = 1.20 m and d = 0.120 mm and assume the slit system is illuminated with monochromatic 500-nm light. Calculate the phase difference between the two wave fronts arriving at P when (a) = 0.500 and (b) y = 5.00 mm. (c) What is the value of for which the phase difference is 0.333 rad? (d) What is the value of for which the path difference is /4? Figure P36.10arrow_forwardFigure P36.53 shows two thin glass plates separated by a wire with a square cross section of side length w, forming an air wedge between the plates. What is the edge length w of the wire if 42 dark fringes are observed from above when 589-nm light strikes the wedge at normal incidence? FIGURE P36.53arrow_forwardA beam of 580-nm light passes through two closely spaced glass plates at close to normal incidence as shown in Figure P27.23. For what minimum nonzero value of the plate separation d is the transmitted light bright?arrow_forward
- A Fraunhofer diffraction pattern is produced on a screen located 1.00 m from a single slit. If a light source of wavelength 5.00 107 m is used and the distance from the center of the central bright fringe to the first dark fringe is 5.00 103 m, what is the slit width? (a) 0.010 0 mm (b) 0.100 mm (c) 0.200 mm (d) 1.00 mm (e) 0.005 00 mmarrow_forwardRed light (wavelength 632.8 nm in air) from a Helium-Neon laser is incident on a single slit of width 0.05 mm. The entire apparatus is immersed in water of refractive index 1.333. Determine the angular width of the central peak.arrow_forwardInterference fringes are produced using Lloyds mirror and a source S of wavelength = 606 nm as shown in Figure P36.41. Fringes separated by y = 1.20 mm are formed on a screen a distance L = 2.00 m from the source. Find the vertical distance h of the source above the reflecting surface. Figure P36.41arrow_forward
- Table P35.80 presents data gathered by students performing a double-slit experiment. The distance between the slits is 0.0700 mm, and the distance to the screen is 2.50 m. The intensity of the central maximum is 6.50 106 W/m2. What is the intensity at y = 0.500 cm? TABLE P35.80arrow_forwardCoherent light rays of wavelength strike a pair of slits separated by distance d at an angle 1, with respect to the normal to the plane containing the slits as shown in Figure P27.14. The rays leaving the slits make an angle 2 with respect to the normal, and an interference maximum is formed by those rays on a screen that is a great distance from the slits. Show that the angle 2 is given by 2=sin1(sin1md) where m is an integer.arrow_forwardFigure CQ27.4 shows an unbroken soap film in a circular frame. The film thickness increases from top to bottom, slowly at first and then rapidly. As a simpler model, consider a soap film (n = 1.33) contained within a rectangular wire frame. The frame is held vertically so that the film drains downward and forms a wedge with flat faces. The thickness of the film at the top is essentially zero. The film is viewed in reflected white light with near-normal incidence, and the first violet ( = 420 nm) interference band is observed 3.00 cm from the top edge of the film. (a) Locate the first red ( = 680 nm) interference band. (b) Determine the film thickness at the positions of the violet and red bands. (c) What is the wedge angle of the film?arrow_forward
- Why is the following situation impossible? A piece of transparent material having an index of refraction n = 1.50 is cut into the shape of a wedge as shown in Figure P36.40. Both the top and bottom surfaces of the wedge are in contact with air. Monochromatic light of wavelength = 632.8 nm is normally incident from above, and the wedge is viewed from above. Let h = 1.00 mm represent the height of the wedge and = 0.500 m its length. A thin-film interference pattern appears in the wedge due to reflection from the top and bottom surfaces. You have been given the task of counting the number of bright fringes that appear in the entire length of the wedge. You find this task tedious, and your concentration is broken by a noisy distraction after accurately counting 5 000 bright fringes. Figure P36.40arrow_forwardShow that the distribution of intensity in a double-slit pattern is given by Equation 36.9. Begin by assuming that the total magnitude of the electric field at point P on the screen in Figure 36.4 is the superposition of two waves, with electric field magnitudes E1=E0sintE2=E0sin(t+) The phase angle in in E2 is due to the extra path length traveled by the lower beam in Figure 36.4. Recall from Equation 33.27 that the intensity of light is proportional to the square of the amplitude of the electric field. In addition, the apparent intensity of the pattern is the time-averaged intensity of the electromagnetic wave. You will need to evaluate the integral of the square of the sine function over one period. Refer to Figure 32.5 for an easy way to perform this evaluation. You will also need the trigonometric identity sinA+sinB=2sin(A+B2)cos(AB2)arrow_forwardMonochromatic light of wavelength 620 nm passes through a very narrow slit S and then strikes a screen in which are two parallel slits. S1 and S2, as shown in Figure P37.75. Slit S1 is directly in line with S and at a distance of L = 1.20 in away from S, whereas S2, is displaced a distance d to one side. The light is detected at point /Jon a second screen, equidistant from S1 and S2. When either slit S1 or S2 is open, equal light intensities are measured at point P. When both slits are open, the intensity is three times larger. Find the minimum possible value for the slit separation d.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Diffraction of light animation best to understand class 12 physics; Author: PTAS: Physics Tomorrow Ambition School;https://www.youtube.com/watch?v=aYkd_xSvaxE;License: Standard YouTube License, CC-BY