Bats are capable of navigating using the earth’s field—a plus for an animal that may fly great distances from its roost at night, if, while sleeping during the day, hats are exposed to a field of a similar magnitude but different direction than the earth’s field, they are more likely to lose their way during their next lengthy night flight. Suppose you are a researcher doing such an experiment in a location where the earth's field is 50 μ T at a 60° angle below horizontal. You make a 50-cm-diameter, 100-turn coil around a roosting box: the sleeping bats are at the center of the coil. You wish to pass a current through the coil to produce a field that, when combined with the earth’s field, creates a net field with the same strength and dip angle (60 below horizontal) as the earth’s field hut with a horizontal component that points south rather than north. What are the proper orientation of the coil and the necessary current?
Bats are capable of navigating using the earth’s field—a plus for an animal that may fly great distances from its roost at night, if, while sleeping during the day, hats are exposed to a field of a similar magnitude but different direction than the earth’s field, they are more likely to lose their way during their next lengthy night flight. Suppose you are a researcher doing such an experiment in a location where the earth's field is 50 μ T at a 60° angle below horizontal. You make a 50-cm-diameter, 100-turn coil around a roosting box: the sleeping bats are at the center of the coil. You wish to pass a current through the coil to produce a field that, when combined with the earth’s field, creates a net field with the same strength and dip angle (60 below horizontal) as the earth’s field hut with a horizontal component that points south rather than north. What are the proper orientation of the coil and the necessary current?
Bats are capable of navigating using the earth’s field—a plus for an animal that may fly great distances from its roost at night, if, while sleeping during the day, hats are exposed to a field of a similar magnitude but different direction than the earth’s field, they are more likely to lose their way during their next lengthy night flight. Suppose you are a researcher doing such an experiment in a location where the earth's field is 50 μT at a 60° angle below horizontal. You make a 50-cm-diameter, 100-turn coil around a roosting box: the sleeping bats are at the center of the coil. You wish to pass a current through the coil to produce a field that, when combined with the earth’s field, creates a net field with the same strength and dip angle (60 below horizontal) as the earth’s field hut with a horizontal component that points south rather than north. What are the proper orientation of the coil and the necessary current?
Checkpoint 4
The figure shows four orientations of an electric di-
pole in an external electric field. Rank the orienta-
tions according to (a) the magnitude of the torque
on the dipole and (b) the potential energy of the di-
pole, greatest first.
(1)
(2)
E
(4)
What is integrated science.
What is fractional distillation
What is simple distillation
19:39 ·
C
Chegg
1 69%
✓
The compound beam is fixed at Ę and supported by rollers at A and B. There are pins at C and D. Take
F=1700 lb. (Figure 1)
Figure
800 lb
||-5-
F
600 lb
بتا
D
E
C
BO
10 ft 5 ft 4 ft-—— 6 ft — 5 ft-
Solved Part A The compound
beam is fixed at E and...
Hình ảnh có thể có bản quyền. Tìm hiểu thêm
Problem
A-12
% Chia sẻ
kip
800 lb
Truy cập )
D Lưu
of
C
600 lb
|-sa+ 10ft 5ft 4ft6ft
D
E
5 ft-
Trying
Cheaa
Những kết quả này có
hữu ích không?
There are pins at C and D To F-1200 Egue!)
Chegg
Solved The compound b...
Có Không ☑
|||
Chegg
10
וח
Chapter 24 Solutions
Mastering Physics with Pearson eText -- Standalone Access Card -- for College Physics: A Strategic Approach (3rd Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.