24.7 Skills for applying the wave model of light * EST Morpho butterfly reflection grating wings A reflection grating reflects light from adjacent lines in the grating instead of allowing the light to pass through slits, as in a transmission grating. If we assume perpendicular incidence, then we can determine the angular deflection of bright bands the same way we did for a transmission grating. White light is incident on the wing of a Morpho butterfly (whose wings act as reflection gratings). Red light of wavelength 660 nm is deflected in the 1st order at an angle of 1.2 ° . (a) Determine the angular deflection in the 1st order of blue light (460 nm) (b) Determine the angular deflection in the 3rd order of yellow light (560 nm).
24.7 Skills for applying the wave model of light * EST Morpho butterfly reflection grating wings A reflection grating reflects light from adjacent lines in the grating instead of allowing the light to pass through slits, as in a transmission grating. If we assume perpendicular incidence, then we can determine the angular deflection of bright bands the same way we did for a transmission grating. White light is incident on the wing of a Morpho butterfly (whose wings act as reflection gratings). Red light of wavelength 660 nm is deflected in the 1st order at an angle of 1.2 ° . (a) Determine the angular deflection in the 1st order of blue light (460 nm) (b) Determine the angular deflection in the 3rd order of yellow light (560 nm).
* EST Morpho butterfly reflection grating wings A reflection grating reflects light from adjacent lines in the grating instead of allowing the light to pass through slits, as in a transmission grating. If we assume perpendicular incidence, then we can determine the angular deflection of bright bands the same way we did for a transmission grating. White light is incident on the wing of a Morpho butterfly (whose wings act as reflection gratings). Red light of wavelength 660 nm is deflected in the 1st order at an angle of
1.2
°
. (a) Determine the angular deflection in the 1st order of blue light (460 nm) (b) Determine the angular deflection in the 3rd order of yellow light (560 nm).
The force of the quadriceps (Fq) and force of the patellar tendon (Fp) is identical (i.e., 1000 N each). In the figure below angle in blue is Θ and the in green is half Θ (i.e., Θ/2). A) Calculate the patellar reaction force (i.e., R resultant vector is the sum of the horizontal component of the quadriceps and patellar tendon force) at the following joint angles: you need to provide a diagram showing the vector and its components for each part. a1) Θ = 160 degrees, a2) Θ = 90 degrees. NOTE: USE ONLY TRIGNOMETRIC FUNCTIONS (SIN/TAN/COS, NO LAW OF COSINES, NO COMPLICATED ALGEBRAIC EQUATIONS OR ANYTHING ELSE, ETC. Question A has 2 parts!
No chatgpt pls will upvote
No chatgpt pls will upvote
Chapter 24 Solutions
Modified Mastering Physics with Pearson eText -- Access Card -- for College Physics: Explore and Apply (18-Weeks)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.