Typical blood velocities in the coronary arteries range from 10 to 30 cm/s. An electromagnetic flowmeter applies a magnetic field of 0.25 T to a coronary artery with a blood velocity of 15 cm/s. As we saw in Figure 24.36, this field exerts a force on ions in the blood, which will separate. The ions will separate until they make an electric field that exactly balances the magnetic force. This electric field produces a voltage that can be measured. a. What force is felt by a singly ionized (positive) sodium ion? b. Charges in the blood will separate until they produce an electric field that cancels this magnetic force. What will be the resulting electric field? c. What voltage will this electric field produce across an artery with a diameter of 3.0 mm?
Typical blood velocities in the coronary arteries range from 10 to 30 cm/s. An electromagnetic flowmeter applies a magnetic field of 0.25 T to a coronary artery with a blood velocity of 15 cm/s. As we saw in Figure 24.36, this field exerts a force on ions in the blood, which will separate. The ions will separate until they make an electric field that exactly balances the magnetic force. This electric field produces a voltage that can be measured. a. What force is felt by a singly ionized (positive) sodium ion? b. Charges in the blood will separate until they produce an electric field that cancels this magnetic force. What will be the resulting electric field? c. What voltage will this electric field produce across an artery with a diameter of 3.0 mm?
Typical blood velocities in the coronary arteries range from 10 to 30 cm/s. An electromagnetic flowmeter applies a magnetic field of 0.25 T to a coronary artery with a blood velocity of 15 cm/s. As we saw in Figure 24.36, this field exerts a force on ions in the blood, which will separate. The ions will separate until they make an electric field that exactly balances the magnetic force. This electric field produces a voltage that can be measured.
a. What force is felt by a singly ionized (positive) sodium ion?
b. Charges in the blood will separate until they produce an electric field that cancels this magnetic force. What will be the resulting electric field?
c. What voltage will this electric field produce across an artery with a diameter of 3.0 mm?
Interaction between an electric field and a magnetic field.
The figure gives the acceleration a versus time t for a particle moving along an x axis. The a-axis scale is set by as = 12.0 m/s². At t = -2.0
s, the particle's velocity is 11.0 m/s. What is its velocity at t = 6.0 s?
a (m/s²)
as
-2
0
2
t(s)
4
Two solid cylindrical rods AB and BC are welded together at B and loaded as shown. Knowing that the average normal stress must not
exceed 150 MPa in either rod, determine the smallest allowable values of the diameters d₁ and d2. Take P= 85 kN.
P
125 kN
B
125 kN
C
0.9 m
1.2 m
The smallest allowable value of the diameter d₁ is
The smallest allowable value of the diameter d₂ is
mm.
mm.
Westros, from Game of Thrones, has an area of approximately 6.73⋅106 miles26.73⋅106miles2. Convert the area of Westros to km2 where 1.00 mile = 1.609 km.
Chapter 24 Solutions
College Physics: A Strategic Approach (3rd Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.