
EBK PHYSICS
5th Edition
ISBN: 8220103026918
Author: Walker
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 24, Problem 33PCE
Loudspeaker Impedance A loudspeaker’s impedance is listed as 8 0 Ω at 2 0 kHz. Assuming its resistance and capacitance are negligibly small, what is the inductance of the speaker coil?
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Your RL circuit has a characteristic time constant of 19.5 ns, and a resistance of 4.60 MQ.
(a) What is the inductance (in H) of the circuit?
0.00897
× H
(b) What resistance (in MQ) should you use (instead of the 4.60 MQ resistor) to obtain a 1.00 ns time constant, perhaps needed for quick response in an oscilloscope?
8.97
* ΜΩ
Your RL circuit has a characteristic time constant of 19.5 ns, and a resistance of 4.60 MQ.
(a) What is the inductance (in H) of the circuit?
H
(b) What resistance (in MQ) should you use (instead of the 4.60 MQ resistor) to obtain a 1.00 ns time constant, perhaps needed for quick response in an oscilloscope?
ΜΩ
At a distance of 0.212 cm from the center of a charged conducting sphere with radius 0.100cm, the electric field is 485 N/C . What is the electric field 0.598 cm from the center of the sphere? At a distance of 0.196 cmcm from the axis of a very long charged conducting cylinder with radius 0.100cm, the electric field is 485 N/C . What is the electric field 0.620 cm from the axis of the cylinder? At a distance of 0.202 cm from a large uniform sheet of charge, the electric field is 485 N/C . What is the electric field 1.21 cm from the sheet?
Chapter 24 Solutions
EBK PHYSICS
Ch. 24.1 - A circuit has a sinusoidally varying current whose...Ch. 24.2 - Circuit 1 has a capacitor with a capacitance C and...Ch. 24.3 - The two circuits shown in Figure 24-14 have...Ch. 24.4 - A circuit consists of an ac generator and an...Ch. 24.5 - Prob. 5EYUCh. 24.6 - An RLC circuit has a resonance frequency of 60 Hz....Ch. 24 - Why is the current in an ac circuit not always in...Ch. 24 - An LC circuit is driven at a frequency higher than...Ch. 24 - An LC circuit is driven at a frequency lower than...Ch. 24 - Prob. 4CQ
Ch. 24 - Prob. 5CQCh. 24 - Two RLC circuits have different values of L and C....Ch. 24 - Can an RLC circuit have the same impedance at two...Ch. 24 - An ac generator produces a peak voltage of 75 V....Ch. 24 - In many European homes the rms voltage available...Ch. 24 - An rms voltage of 120 V produces a maximum current...Ch. 24 - The rms current in an ac circuit with a resistance...Ch. 24 - A 3.33-k resistor is connected to a generator with...Ch. 24 - A 75-watt lightbulb uses an average power of 75 W...Ch. 24 - Inverter Efficiency An array of solar panels...Ch. 24 - Prob. 8PCECh. 24 - The reactance of a capacitor is 65 at a frequency...Ch. 24 - The capacitive reactance of a capacitor at 60 0 Hz...Ch. 24 - A 105-F capacitor is connected to an ac generator...Ch. 24 - The rms voltage across a 0.010-F capacitor is 2.8...Ch. 24 - Predict/Calculate The rms current through a 55.5-F...Ch. 24 - The maximum current in a 22-F capacitor connected...Ch. 24 - PredicCalculate An rms voltage of 20 5 V with a...Ch. 24 - A circuit consists of a 2.00-kHz generator and a...Ch. 24 - A 0.22-F capacitor is connected to an ac generator...Ch. 24 - At what frequency will a generator with an rms...Ch. 24 - PredicCalculate A 22 0-Fcapacitor is connected to...Ch. 24 - Find the impedance of a 60 0-Hz circuit with a...Ch. 24 - An ac generator with a frequency of 125 Hz and an...Ch. 24 - The rms current in an RC circuit is 0.72 A. The...Ch. 24 - When an ac generator with a frequency of 180 Hz...Ch. 24 - A 50 0-Hz generator with an rms voltage of 115 V...Ch. 24 - (a) At what frequency must the circuit in Problem...Ch. 24 - Find the power factor for an RC circuit connected...Ch. 24 - Predict/Calculate (a) Determine the power factor...Ch. 24 - Square-Wave Voltage II The square-wave voltage...Ch. 24 - Prob. 29PCECh. 24 - An inductor has a reactance of 56 5 at 85 0 Hz....Ch. 24 - What is the rms current in a 97 5-mH inductor when...Ch. 24 - What rms voltage is required to produce an rms...Ch. 24 - Loudspeaker Impedance A loudspeakers impedance is...Ch. 24 - Prob. 34PCECh. 24 - A 525- resistor and a 295-mH inductor are...Ch. 24 - The rms current in an RL circuit is 0 26 A when it...Ch. 24 - An ac generator with a frequency of 1 55 kHz and...Ch. 24 - Predict/Calculate An rms voltage of 22 2 V with a...Ch. 24 - A 0.22-H inductor is connected to an ac generator...Ch. 24 - The phase angle in a certain RL circuit is 68 at a...Ch. 24 - (a) Sketch the phasor diagram for an ac circuit...Ch. 24 - A large air conditioner has a resistance of 7 0 ...Ch. 24 - Prob. 43PCECh. 24 - Prob. 44PCECh. 24 - Prob. 45PCECh. 24 - Predict/Explain (a) When the ac generator in...Ch. 24 - Prob. 47PCECh. 24 - Predict/Explain (a) When the ac generator in...Ch. 24 - Find the rms voltage across each element in an RLC...Ch. 24 - What is the impedance of a 1 50-kQ resistor, a...Ch. 24 - Consider the circuit shown in Figure 24-34 The ac...Ch. 24 - What is the phase angle in an RLC circuit with R =...Ch. 24 - An ac voltmeter, which displays the rms voltage...Ch. 24 - Prob. 54PCECh. 24 - (a) Sketch the phasor diagram for an ac circuit...Ch. 24 - A generator connected to an RLC circuit has an rms...Ch. 24 - Prob. 57PCECh. 24 - Predict/Explain In an RLC circuit a second...Ch. 24 - An RLC circuit has a resonance frequency of 1 9...Ch. 24 - The Magnetron A magnetron in a kitchen microwave...Ch. 24 - At resonance, the rms current in an RLC circuit is...Ch. 24 - The resistance in an RLC circuit is doubled (a)...Ch. 24 - Predict/Calculate The capacitive reactance in an...Ch. 24 - Predict/Calculate The capacitive reactance in an...Ch. 24 - A 115- resistor, a 67 6-mH inductor, and a 189-F...Ch. 24 - (a) Find the frequency at which an 18-F capacitor...Ch. 24 - Consider an RLC circuit with R = 105 , L- 518 mH,...Ch. 24 - Predict/Calculate An RLC circuit has a resonance...Ch. 24 - An RLC circuit has a capacitance of 0 29 F. (a)...Ch. 24 - CE BIO Persistence of Vision Although an...Ch. 24 - CE An RLC circuit is driven at its resonance...Ch. 24 - CE Predict/Explain Suppose the circuits shown in...Ch. 24 - Prob. 73GPCh. 24 - Prob. 74GPCh. 24 - A 4 40-F and an 8.80-F capacitor are connected in...Ch. 24 - A 4.40-F and an 8.80-F capacitor are connected in...Ch. 24 - A 12.5-F capacitor and a 47.5-F capacitor are...Ch. 24 - CE A generator drives an RLC circuit with the...Ch. 24 - Trapped on a deserted island, you salvage some...Ch. 24 - Predict/Calculate When a certain resistor is...Ch. 24 - Find the average power consumed by an RC circuit...Ch. 24 - A 1 15-k resistor and a 505-mH inductor are...Ch. 24 - Prob. 83GPCh. 24 - Predict/Calculate Figure 24-39 shows the phasor...Ch. 24 - Prob. 85GPCh. 24 - Predict/Calculate Black-Box Experiment You are...Ch. 24 - An RLC circuit with R = 20.0 , L = 295 mH, and C =...Ch. 24 - A Light-Dimmer Circuit The intensity of a...Ch. 24 - An electric motor with a resistance of 15 arid an...Ch. 24 - Predict/Calculate Tuning a Radio A radio tuning...Ch. 24 - If the maximum voltage in the square wave shown in...Ch. 24 - An ac generator supplies an rms voltage of 5.00 V...Ch. 24 - An RC circuit consists of a resistor R = 32 , a...Ch. 24 - Prob. 94PPCh. 24 - Prob. 95PPCh. 24 - Prob. 96PPCh. 24 - Prob. 97PPCh. 24 - Prob. 98PPCh. 24 - Prob. 99PP
Additional Science Textbook Solutions
Find more solutions based on key concepts
11. A ball of putty is dropped from a height of 2 m onto a hard floor, where it sticks. What object or objects ...
College Physics: A Strategic Approach (3rd Edition)
Your bore cells, muscle cells, and skin cells look different because a. different kinds of genes are present in...
Campbell Essential Biology (7th Edition)
3. What are serous membranes, and what are their functions?
Human Anatomy & Physiology (2nd Edition)
Acetobacter is necessary for only one of the steps of vitamin C manufacture. The easiest way to accomplish this...
Microbiology: An Introduction
All of the following processes are involved in the carbon cycle except: a. photosynthesis b. cell respiration c...
Human Biology: Concepts and Current Issues (8th Edition)
Name the element in the third period (row) of the periodic table with: a. three valence electrons b. a total of...
Introductory Chemistry (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A hollow, conducting sphere with an outer radius of 0.260 m and an inner radius of 0.200 m has a uniform surface charge density of +6.67 × 10−6 C/m2. A charge of -0.800 μC is now introduced into the cavity inside the sphere. What is the new charge density on the outside of the sphere? Calculate the strength of the electric field just outside the sphere. What is the electric flux through a spherical surface just inside the inner surface of the sphere?arrow_forwardA point charge of -3.00 μC is located in the center of a spherical cavity of radius 6.60 cm inside an insulating spherical charged solid. The charge density in the solid is 7.35 × 10−4 C/m3. Calculate the magnitude of the electric field inside the solid at a distance of 9.10 cm from the center of the cavity. Find the direction of this electric field.arrow_forwardAn infinitely long conducting cylindrical rod with a positive charge λ per unit length is surrounded by a conducting cylindrical shell (which is also infinitely long) with a charge per unit length of −2λ and radius r1, as shown in the figure. What is E(r), the radial component of the electric field between the rod and cylindrical shell as a function of the distance r from the axis of the cylindrical rod? Express your answer in terms of λ, r, and ϵ0, the permittivity of free space. What is σinner, the surface charge density (charge per unit area) on the inner surface of the conducting shell? What is σouterσouter, the surface charge density on the outside of the conducting shell? (Recall from the problem statement that the conducting shell has a total charge per unit length given by −2λ.) What is the radial component of the electric field, E(r), outside the shell?arrow_forward
- A very long conducting tube (hollow cylinder) has inner radius aa and outer radius b. It carries charge per unit length +α, where αα is a positive constant with units of C/m. A line of charge lies along the axis of the tube. The line of charge has charge per unit length +α. Calculate the electric field in terms of α and the distance r from the axis of the tube for r<a. Calculate the electric field in terms of α and the distance rr from the axis of the tube for a<r<b. Calculate the electric field in terms of αα and the distance r from the axis of the tube for r>b. What is the charge per unit length on the inner surface of the tube? What is the charge per unit length on the outer surface of the tube?arrow_forwardTwo small insulating spheres with radius 9.00×10−2 m are separated by a large center-to-center distance of 0.545 m . One sphere is negatively charged, with net charge -1.75 μC , and the other sphere is positively charged, with net charge 3.70 μC . The charge is uniformly distributed within the volume of each sphere. What is the magnitude E of the electric field midway between the spheres? Take the permittivity of free space to be ϵ0 = 8.85×10−12 C2/(N⋅m2) . What is the direction of the electric field midway between the spheres?arrow_forwardA conducting spherical shell with inner radius aa and outer radius bb has a positive point charge Q located at its center. The total charge on the shell is -3Q, and it is insulated from its surroundings. Derive the expression for the electric field magnitude in terms of the distance r from the center for the region r<a. Express your answer in terms of some or all of the variables Q, a, b, and appropriate constants. Derive the expression for the electric field magnitude in terms of the distance rr from the center for the region a<r<b. Derive the expression for the electric field magnitude in terms of the distance rr from the center for the region r>b. What is the surface charge density on the inner surface of the conducting shell? What is the surface charge density on the outer surface of the conducting shell?arrow_forward
- A small sphere with a mass of 3.00×10−3 g and carrying a charge of 4.80×10−8 C hangs from a thread near a very large, charged insulating sheet, as shown in the figure (Figure 1). The charge density on the sheet is −2.20×10−9 C/m2 . Find the angle of the thread.arrow_forwardA small conducting spherical shell with inner radius aa and outer radius bb is concentric with a larger conducting spherical shell with inner radius c and outer radius d (Figure 1). The inner shell has total charge +2q, and the outer shell has charge −2q. Calculate the magnitude of the electric field in terms of q and the distance rr from the common center of the two shells for r<a. Calculate the magnitude of the electric field for a<r<b. Calculate the magnitude of the electric field for b<r<c.arrow_forwardA cube has sides of length L = 0.800 m . It is placed with one corner at the origin as shown in the figure. The electric field is not uniform but is given by E→=αxi^+βzk^, where α=−3.90 and β= 7.10. What is the sum of the flux through the surface S5 and S6? What is the sum of the flux through the surface S2 and S4? Find the total electric charge inside the cube.arrow_forward
- In the figure, a proton is projected horizontally midway between two parallel plates that are separated by 0.6 cm. The electrical field due to the plates has magnitude 450000 N/C between the plates away from the edges. If the plates are 3 cm long, find the minimum speed of the proton if it just misses the lower plate as it emerges from the field.arrow_forwardA point charge of magnitude q is at the center of a cube with sides of length L. What is the electric flux Φ through each of the six faces of the cube? What would be the flux Φ1 through a face of the cube if its sides were of length L1? Please explain everything.arrow_forwardIf a 1/2 inch diameter drill bit spins at 3000 rotations per minute, how fast is the outer edge moving as it contacts a piece of metal while drilling a machine part?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning


College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Introduction To Alternating Current; Author: Tutorials Point (India) Ltd;https://www.youtube.com/watch?v=0m142qAZZpE;License: Standard YouTube License, CC-BY