PHYS 212 FOR SCI+ENG W/MAST PHYS >ICP<
1st Edition
ISBN: 9781323834831
Author: Knight
Publisher: PEARSON C
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 24, Problem 2CQ
FIGURE Q24.2 shows cross sections of three-dimensional closed surfaces. They have a flat top and bottom surface above and below the plane of the page. However, the electric field is everywhere parallel to the page, so there is no flux through the top or bottom surface. The electric field is uniform over each face of the surface. For each, does the surface enclose a net positive charge, a net negative charge, or no net charge? Explain.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
P.
Consider a solid conducting sphere of ra-
dius R and total charge Q. Which diagram
describes the E(r) vs r (electric field vs radial
distance) function for the sphere?
L.
G.
part 1 of 2
M.
0
R
0
R radius.
الالالا
R
0
R
part 2 of 2
Which diagram describes the E(r) vs r
(electric field vs radial distance) function if
the sphere is non-conducting and it is uni-
formly charged, throughout its volume?
1. S
2. L
3. G
4. P
5. M
1. M
2. P
3. S
4. G
The figures show cross sections of three-dimensional closed surfaces. They
have a flat top and bottom surface above and below the plane of the page.
However, the electric field is everywhere parallel to the page, so there is no
flux through the top or bottom surface. The electric field is uniform over each
face of the surface.
Figure
10 N/C
10 N/C
10 N/C
▾ Part B
For (Figure 2), does the surface enclose a net positive charge, a net negative charge, or no net charge?
Match the words in the left column to the appropriate blanks in the sentences on the right.
Submit
an outward
an inward
zero
no net charge
a net negative charge
a net positive charge
There is
flux through each side of the surface, which indicates that there is
enclosed in this surface.
Previous Answers Request Answer
X Incorrect; Try Again; 4 attempts remaining
You filled in 2 of 2 blanks incorrectly.
Reset Help
Two charged concentric spherical charged surfaces lie at the center of a Gaussian surface in the shape of a
dodecahedron. The inner sphere has charge +20 mC and radius 10 cm. The outer sphere has a charge -43 mC and
radius 30 cm. The dodecahedron surface may be inscribed within a sphere of radius 100 cm. a. Draw a physics
diagram of the problem. For the dodecahedron, you may just draw the sphere that inscribes it. b. Compute the electric
flux through one face of the dodecahedron.
Chapter 24 Solutions
PHYS 212 FOR SCI+ENG W/MAST PHYS >ICP<
Ch. 24 - Suppose you have the uniformly charged cube in...Ch. 24 - FIGURE Q24.2 shows cross sections of...Ch. 24 - The square and circle in FIGURE Q24.3 are in the...Ch. 24 - Prob. 4CQCh. 24 - Prob. 5CQCh. 24 - What is the electric flux through each of the...Ch. 24 - Prob. 7CQCh. 24 - The two spheres in FIGURE Q24.8 on the next page...Ch. 24 - The sphere and ellipsoid in FIGURE Q24.9 surround...Ch. 24 - A small, metal sphere hangs by an insulating...
Ch. 24 - l. FIGURE EX24.1 shows two cross sections of two...Ch. 24 - FIGURE EX24.2 shows a cross section of two...Ch. 24 - FIGURE EX24.3 shows a cross section of two...Ch. 24 - The electric field is constant over each face of...Ch. 24 - The electric field is constant over each face of...Ch. 24 - The cube in FIGURE EX24.6 contains negative...Ch. 24 - The cube in FIGURE EX24.7 contains negative...Ch. 24 - The cube in FIGURE EX24.8 contains no net charge....Ch. 24 - What is the electric flux through the surface...Ch. 24 - What is the electric flux through the surface...Ch. 24 - II The electric flux through the surface shown in...Ch. 24 - ]12. A 2.0cm3.0cm rectangle lies in the xy-plane....Ch. 24 - A 2.0cm3.0cm rectangle lies in the xz-plane. What...Ch. 24 - Prob. 14EAPCh. 24 - 15. A box with its edges aligned with
the...Ch. 24 - What is the net electric flux through the two...Ch. 24 - FIGURE EX24.17 shows three charges. Draw these...Ch. 24 - Prob. 18EAPCh. 24 - FIGURE EX24.19 shows three Gaussian surfaces and...Ch. 24 - What is the net electric flux through the torus...Ch. 24 - What is the net electric flux through the cylinder...Ch. 24 - Prob. 22EAPCh. 24 - Prob. 23EAPCh. 24 - A spark occurs at the tip of a metal needle if the...Ch. 24 - The electric field strength just above one face of...Ch. 24 - The conducting box in FIGURE EX24.26 has been...Ch. 24 - FIGURE EX24.27 shows a hollow cavity within a...Ch. 24 - A thin, horizontal, 10-cm-diameter copper plate is...Ch. 24 - Prob. 29EAPCh. 24 - Prob. 30EAPCh. 24 - II A tetrahedron has an equilateral triangle base...Ch. 24 - Charges q1= —4Q and q2= +2Q are located at x = —a...Ch. 24 - Prob. 33EAPCh. 24 - A spherically symmetric charge distribution...Ch. 24 - A neutral conductor contains a hollow cavity in...Ch. 24 - Prob. 36EAPCh. 24 - 37. A 20-cm-radius ball is uniformly charged to 80...Ch. 24 - Prob. 38EAPCh. 24 - Prob. 39EAPCh. 24 - Prob. 40EAPCh. 24 - A hollow metal sphere has 6 cm and 10 cm inner and...Ch. 24 - Prob. 42EAPCh. 24 - Find the electric field inside and outside a...Ch. 24 - Prob. 44EAPCh. 24 - Prob. 45EAPCh. 24 - Prob. 46EAPCh. 24 - FIGURE P24.47 shows an infinitely wide conductor...Ch. 24 - FIGURE P24.48 shows two very large slabs of metal...Ch. 24 - Prob. 49EAPCh. 24 - A very long, uniformly charged cylinder has radius...Ch. 24 - Prob. 51EAPCh. 24 - Prob. 52EAPCh. 24 - II A long cylinder with radius b and volume charge...Ch. 24 - A spherical shell has inner radius Rin, and outer...Ch. 24 - Prob. 55EAPCh. 24 - Newton's law of gravity and Coulomb's law are both...Ch. 24 - Prob. 57EAPCh. 24 - An infinite cylinder of radius R has a linear...Ch. 24 - Prob. 59EAPCh. 24 - A sphere of radius R has total charge Q. The...Ch. 24 - II A spherical ball of charge has radius R and...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The colored regions in Figure P25.21 represent four three-dimensional Gaussian surfaces A through D. The regions may also contain three charged particles, with qA + +5.00 nC, qB = 5.00 nC, and qC = +8.00 nC, that are nearby as shown. What is the electric flux through each of the four surfaces? FIGURE P25.21arrow_forwardA particle with charge q = 7.20 C is surrounded by a spherical shell of radius R = 1.50 m. What is the electric flux through the spherical cap with half angle = 30.0 (Fig. P25.79)? FIGURE P25.79arrow_forwardFind the net electric flux through (a) the closed spherical surface in a uniform electric field shown in Figure P23.22a and (b) the closed cylindrical surface shown in Figure P23.22b. (c) What can you conclude about the charges, if any, inside the cylindrical surface? Figure P23.22arrow_forward
- A pyramid has a square base with an area of 4.00 m2 and a height of 3.5 m. Its walls are four isosceles triangles. The pyramid is in a uniform electric field of 655 N/C pointing downward (Fig. P25.13). What is the electric flux through the square base?arrow_forwardA Using Gausss law, find the electric flux through each of the closed Gaussian surfaces A, B, C, and D shown in Figure P25.25. FIGURE P25.25arrow_forwardA positively charged sphere and a negatively charged sphere are in a sealed container. The only way the charged spheres can be examined is by observing the electric field outside the container. a. Given the depiction of the electric fields in Figure P25.7A, is the net electric flux through the container zero, positive, or negative? Explain your answer. b. Two different spheres are placed inside a container. Given the depiction of the electric fields in Figure P25.7B, is the net electric flux through the container zero, positive, or negative? Explain your answer.arrow_forward
- Two positively charged spheres are shown in Figure P24.70. Sphere 1 has twice as much charge as sphere 2. If q = 6.55 nC, d = 0.250 m, and y = 1.25 m, what is the electric field at point A?arrow_forwardA dosed surface with dimensions a = b= 0.400 111 and c = 0.600 in is located as shown in Figure 124.63. The left edge of the closed surface is located at position x = a. The electric field throughout the region is non- uniform and is given by E = (3.00 + 2.00x2)i N/C, where x is in meters. (a) Calculate the net electric flux leaving the closed surface. (b) What net charge enclosed by the surface?arrow_forwardA total charge Q is distributed uniformly on a metal ring of radius R. a. What is the magnitude of the electric field in the center of the ring at point O (Fig. P24.61)? b. What is the magnitude of the electric field at the point A lying on the axis of the ring a distance R from the center O (same length as the radius of the ring)? FIGURE P24.61arrow_forward
- A point charge is located at the origin. Centered along the x axis is a cylindrical closed surface of radius 10 cm with one end surface located at x = 2 m and the other end surface located at x = 2.5 m. If the magnitude of the electric flux through the surface at x = 2 m is 4 N . m2 /C, what is the magnitude of the electric flux through the surface at x = 2.5 m? Select one: a. 1.8 N . m2 /C b. 2.56 N . m2 /C c. 1.0 N . m2 /C d. 4.0 N . m2 /C e. 5.0 N . m2 /Carrow_forwardA spherical shell of radius 1.40 m contains a single charged particle with q = 38.0 nC at its center. (a) What is the total electric flux through the surface of the shell? N. m²/c (b) What is the total electric flux through any hemispherical portion of the shell's surface? N. m²/carrow_forwardA uniformly charged disk of radius R=25 cm carries a total charge of Q=2 μC. R P 1 Find the magnitude of the electric field E created by the disk at the point P located at distance 40 cm from the center of the disk. E = [N/C] 2. What is the direction of the electric field E created by the disk at point P. Direction: 3. Write the expression of the electric filed E created by the disk at point P. Ē =< [N/C] 4. Find the magnitude of the electric field E created by the disk at the point P located at distance 8 m from thearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY