Chemistry & Chemical Reactivity, Hybrid Edition (with OWLv2 24-Months Printed Access Card)
Chemistry & Chemical Reactivity, Hybrid Edition (with OWLv2 24-Months Printed Access Card)
9th Edition
ISBN: 9781285462530
Author: John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher: Cengage Learning
bartleby

Videos

Question
Book Icon
Chapter 24, Problem 29GQ

(a)

Interpretation Introduction

Interpretation:

The value of enthalpy change ΔrH° for the production of one mole of glucose by the process of photosynthesis at 25°C has to be calculated.

  6CO2(g)+6H2O(l)C6H12O6(s)+6O2(g)

Concept introduction:

The change in the enthalpy of a reaction when the reactant is converted into product under standard conditions is called standard enthalpy of reaction.

The expression for standard enthalpy of reaction is,

ΔrH°=nΔfH°(products)nΔfH°(reactants) (1)

Here, ΔfH° is the standard enthalpy of formation and n is the number of moles of reactant and product in the balanced chemical reaction.

(a)

Expert Solution
Check Mark

Explanation of Solution

The value of ΔrH° for the production of one mole of glucose by the process of photosynthesis at 25°C is calculated below.

Given:

Refer to Appendix L for the values of standard enthalpy of formation.

The standard enthalpy of formation of C6H12O6(s) is 1273.3 kJ/mol.

The standard enthalpy of formation of O2(g) is 0 kJ/mol.

The standard enthalpy of formation of H2O(l) is 285.8 kJ/mol.

The standard enthalpy of formation of CO2(g) is 393.5 kJ/mol.

The reaction involved in photosynthesis is,

  6CO2(g)+6H2O(l)C6H12O6(s)+6O2(g)

The ΔrH° can be calculated by the following expression,

ΔrH°=nΔfH°(products)nΔfH°(reactants)=[[(1 mol C6H12O6(s)/mol-rxn)ΔfH°[C6H12O6(s)]+(6 mol O2(g)/mol-rxn)ΔfH°[O2(g)]][(6 mol CO2(g)/mol-rxn)ΔfH°[CO2(g)]+(6 mol H2O(l)/mol-rxn)ΔfH°[H2O(l)]]]

Substitute the value of ΔfH°.

ΔrH°=[[(1 mol C6H12O6(s)/mol-rxn)(1273.3 kJ/mol)+(6 mol O2(g)/mol-rxn)(0)][(6 mol CO2(g)/mol-rxn)(393.5 kJ/mol)+(6 mol H2O(l)/mol-rxn)(285.8 kJ/mol)]]=+2803 kJ/mol-rxn

The value of ΔrH° for the production of one mole of glucose by the process of photosynthesis at 25°C is +2803 kJ/mol-rxn.

(b)

Interpretation Introduction

Interpretation:

The enthalpy change involved in producing one molecule of glucose by the process of photosynthesis at 25°C has to be calculated.

Concept introduction:

The relationship between the number of moles and the number of molecules is,

Number of moles, n=number of molecules(N)Avagadro number(NA)

Also,

1 mole = 6.023×1023 molecules

(b)

Expert Solution
Check Mark

Explanation of Solution

The enthalpy change involved in producing one molecule of glucose by the process of photosynthesis at 25°C is calculated below.

Given:

The enthalpy change involved in the production of one mole of glucose by the process of photosynthesis at 25°C is +2803 kJ/mol-rxn.

Since 1 mole = 6.023×1023 molecules therefore enthalpy change involved in the production of one molecule of glucose is,

 ΔrH°=(2803 kJ(1000 J1 kJ)mol)(1 mol6.023×1023 molecule)=4.654×1018 J/molecule

The enthalpy change involved in producing one molecule of glucose by the process of photosynthesis is 4.654×1018 J/molecule.

(c)

Interpretation Introduction

Interpretation:

The energy of a photon of light having a wavelength 650 nm has to be calculated.

Concept introduction:

The energy of one photon (E) is given as,

E=hν=hcλ (2)

Here, c is the speed of light, λ is the wavelength of light, h is Planks constant.

Value of c=3.0×108 ms1 and h=6.626×1034 Js1.

(c)

Expert Solution
Check Mark

Explanation of Solution

The energy of a photon of light having wavelength 650 nm is calculated below.

Given:

The wavelength of light is 650 nm.

The speed of light is 3.0×108 ms1.

Planks constant is 6.626×1034 Js1.

Substitute the values in equation (2).

E=(6.626×1034 Js1)(3.0×108 ms1)(650 nm)(1 m109nm)=3.1×1019 J

The energy of a photon of light having wavelength 650 nm is 3.1×1019 J.

(d)

Interpretation Introduction

Interpretation:

The absorption of one photon at 650 nm can lead to the production of one molecule of glucose or multiple photons must be absorbed has to be predicted.

Concept introduction: If the energy of one photon is greater than the energy required for the production of one mole of substance then single photon absorption is sufficient for the reaction to proceed else multiple photons must be absorbed.

(d)

Expert Solution
Check Mark

Explanation of Solution

The energy of one photon calculated in part(c) is 3.1×1019 J and the energy required for the production of one molecule of glucose calculated in part(b) is 4.654×1018 J/molecule. Since the energy required for the production of one molecule of glucose is greater than the energy of one photon thus multiple photons must be absorbed for the reaction to proceed.

Therefore multiple photons must be absorbed for the production of one molecule of glucose by photosynthesis reaction.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
5. A solution of sucrose is fermented in a vessel until the evolution of CO2 ceases. Then, the product solution is analyzed and found to contain, 45% ethanol; 5% acetic acid; and 15% glycerin by weight. If the original charge is 500 kg, evaluate; e. The ratio of sucrose to water in the original charge (wt/wt). f. Moles of CO2 evolved. g. Maximum possible amount of ethanol that could be formed. h. Conversion efficiency. i. Per cent excess of excess reactant. Reactions: Inversion reaction: C12H22O11 + H2O →2C6H12O6 Fermentation reaction: C6H12O6 →→2C2H5OH + 2CO2 Formation of acetic acid and glycerin: C6H12O6 + C2H5OH + H₂O→ CH3COOH + 2C3H8O3
Show work. don't give Ai generated solution.  How many carbons and hydrogens are in the structure?
13. (11pts total) Consider the arrows pointing at three different carbon-carbon bonds in the molecule depicted below. Bond B 2°C. +2°C. cleavage Bond A •CH3 + 26.← Cleavage 2°C. + Bond C +3°C• CH3 2C Cleavage E 2°C. 26. weakest bond Intact molecule Strongest 3°C 20. Gund Largest argest a. (2pts) Which bond between A-C is weakest? Which is strongest? Place answers in appropriate boxes. C Weakest bond A Produces Most Bond Strongest Bond Strongest Gund produces least stable radicals Weakest Stable radical b. (4pts) Consider the relative stability of all cleavage products that form when bonds A, B, AND C are homolytically cleaved/broken. Hint: cleavage products of bonds A, B, and C are all carbon radicals. i. Which ONE cleavage product is the most stable? A condensed or bond line representation is fine. 13°C. formed in bound C cleavage ii. Which ONE cleavage product is the least stable? A condensed or bond line representation is fine. • CH3 methyl radical Formed in Gund A Cleavage c.…

Chapter 24 Solutions

Chemistry & Chemical Reactivity, Hybrid Edition (with OWLv2 24-Months Printed Access Card)

Ch. 24.3 - Prob. 2RCCh. 24.3 - 3. Which amino acid is selected by the mRNA codon...Ch. 24.3 - Kynamro has the hydrogen bonding sequence:...Ch. 24.3 - The formula of Kynamro is...Ch. 24.3 - Prob. 3QCh. 24.4 - 1. Which of the following is not an example of a...Ch. 24.4 - Prob. 2RCCh. 24.5 - Prob. 1RCCh. 24.5 - Prob. 2RCCh. 24.5 - Prob. 1QCh. 24.5 - Prob. 2QCh. 24.5 - Prob. 3QCh. 24 - (a) Draw the Lewis structure for the amino acid...Ch. 24 - (a) Draw the Lewis structure for the amino acid...Ch. 24 - Prob. 3PSCh. 24 - Prob. 4PSCh. 24 - Draw Lewis structures for the two dipeptides that...Ch. 24 - Do the amino acid sequences: valine-asparagine and...Ch. 24 - Draw the Lewis structure for the tripeptide...Ch. 24 - Prob. 8PSCh. 24 - Prob. 9PSCh. 24 - Prob. 10PSCh. 24 - Prob. 11PSCh. 24 - Prob. 12PSCh. 24 - (a) Draw the structural formula for the sugar...Ch. 24 - (a) Draw the structural formula for the sugar -D-2...Ch. 24 - Prob. 15PSCh. 24 - Prob. 16PSCh. 24 - Given the following nucleotide sequence in DNA:...Ch. 24 - Given the following nucleotide sequence in DNA: 5'...Ch. 24 - Prob. 19PSCh. 24 - If a drop of oleic acid is added to a dish of...Ch. 24 - What structure do all steroids have in common?Ch. 24 - Prob. 22PSCh. 24 - Prob. 23PSCh. 24 - The chemical equation for the fermentation of...Ch. 24 - Prob. 25PSCh. 24 - Prob. 26PSCh. 24 - Prob. 27GQCh. 24 - Prob. 28GQCh. 24 - Prob. 29GQCh. 24 - Prob. 30GQCh. 24 - Prob. 31GQCh. 24 - There are 41 = 4 mononucleotides of DNA, there are...Ch. 24 - Prob. 33GQCh. 24 - The first step of the metabolic process known as...Ch. 24 - Prob. 35ILCh. 24 - Insulin is a protein important in the metabolism...Ch. 24 - Prob. 37SCQCh. 24 - Prob. 38SCQCh. 24 - Do the DNA sequences ATGC and CGTA represent the...Ch. 24 - Prob. 41SCQCh. 24 - Which of the following statements is/are true? (a)...
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY