The heat flux q is the quantity of heat flowing through a unit area of a material per unit time. It can be computed with Fourier's law,
Where J has units of
x, cm | 0 | 0.08 | 0.16 |
T,
|
20 | 17 | 15 |
If the flux at
Want to see the full answer?
Check out a sample textbook solutionChapter 24 Solutions
Numerical Methods For Engineers, 7 Ed
- is a mass hanging by a spring under the influence of gravity. The force due to gravity, Fg, is acting in the negative-y direction. The dynamic variable is y. On the left, the system is shown without spring deflection. On the right, at the beginning of an experiment, the mass is pushed upward (positive-y direction) by an amount y₁. The gravitational constant g, is 9.81 m/s². No Deflection m k Fg = mg Initial Condition m k Fg = mg Figure 3: System schematic for Problem 4. Yi 8 Your tasks: A Write down, in terms of the variables given, the total potential energy stored in the system when it is held in the initial condition, relative to the system with no deflection. B Write down an expression for the total energy H as the sum of potential and kinetic energy in terms of y, y, yi and element parameters. Will H change as the mass moves? C After the system is released, it will start to move. Write down an expression for the kinetic energy of the system, T, in terms of position, y, the initial…arrow_forwardis a mass hanging by a spring under the influence of gravity. The force due to gravity, Fg, is acting in the negative-y direction. The dynamic variable is y. On the left, the system is shown without spring deflection. On the right, at the beginning of an experiment, the mass is pushed upward (positive-y direction) by an amount y₁. The gravitational constant g, is 9.81 m/s². DO C.D Frontly у Your tasks: No Deflection m k Fg = mg Initial Condition y m k Write down an expression for the total energy If as the sum Write down an expression for the total energy H Fg = mg Figure 3: System schematic for Problem 4. Yi & X Write down, in terms of the variables given, the total potential energy stored in the system when it is held in the initial condition, relative to the system with no deflection. as the sum of potential and kinetic energy in terms of y, y, yi C After the system is released, it will start to move. Write down an expression for the kinetic energy of the system, T, in terms of…arrow_forwardThe stress profile shown below is applied to six different biological materials: Log Time (s] The mechanical behavior of each of the materials can be modeled as a Voigt body. In response to o,= 20 Pa applied to each of the six materials, the following responses are obtained: 2 of Maferial 6 Material 5 0.12 0.10 Material 4 0.08 Material 3 0.06 0.04 Material 2 0.02 Material 1 (a) Which of the materials has the highest Young's Modulus (E)? Why? Log Time (s) (b) Using strain value of 0.06, estimate the coefficient of viscosity (n) for Material 6. Stress (kPa) Strainarrow_forward
- Give True or False for the following: 1.In liquids and gases, heat transmission is caused by conduction and convection 2.The surface geometry is the important factor in convection heat transfer 3. The heat transfer by conduction from heated surface to the adjacent layer of fluid, 4. The heat transfer is increased in the fin when &> 1 5.The unit of the thermal diffusivity is m²/s 6. Temperature change between the materials interfaces is attributed to the thermal contact resistance 7. A material that has a low heat capacity will have a large thermal diffusivity. 8. Heat conduction flowing from one side to other depends directly on thickness 9.Fin efficiency is the ratio of the fin heat dissipation with that of no fin 10.The critical radius is represented the ratio of the convicted heat transfer to the thermal conductivityarrow_forwardThermodynamics is extensively used in engineering field. The following polynomial can be used to relate the zero-pressure specific heat of dry air c, kl/(kg K) to temperature (K) c, = 0.99403 + 1.671 x 104T +9.7215 x 10-872-9.5838 x 10-"T³ + 1.9520 x 10-4T Which of the following(s) is/are the correct method to determine the temperature that corresponds to a specific heat of 1.1 kl/(kg K). (Choose all that applyl) O A) Gauss-Seidel Method O B) Lagrange Interpolation O C) Newton-Divided Difference O 0) Bisection Method Newton Methodarrow_forwardPlease answer in detail.arrow_forward
- A closed thermodynamic system consists of a fixed amount of substance (i.e. mass) in which no substance can flow across the boundary, but energy can. For a closed themodynamic system we cannot add energy to the system, via substance (E ) (1.e. matter which contains energy is not allowed across the boundary) Across the Boundaries E° = No Q = = Yes W mass NO CLOSED = Yes SY STEM m = constant | energy YES Figure 1.1. If the substance inside the thermodynamic system shown in figure 1.1. (i.e. piston cylinder device) is air, is the system a Fixed closed system Moveable closed system A. В.arrow_forwardPlease explain and answerarrow_forwardYou are given the following table for water. Each row has two independent properties. Find the missing values Thermodynamicsarrow_forward
- The left side of this equation tells how much energy Q the cylinder gives to the water while it cools. The right side of this equation tells how much energy Q the water and aluminum cup absorb from the cylinder to warm up. Because it is the same energy, they are equal. What is known in this equation? Mcyl 411.7 g, malum 46.5 g, malum+water = 175 g Can you find: mwater =? g Twater = Talum = 20°C (water and cup of room temperature) 90°C, T; = 35°C (hot cylinder and cool "cylinder+cup+water" temperatures) Tcyl kCal Calum = 0.22, Cwater 1 (specific heat of water and aluminum, measured in units kg-°C What are we looking for is Ccul - How we find it? Plug all the numbers into the equation (1), Ccul will be one unknown which you can calculate from the equation. Important, convert all the masses from grams to kilograms! After you find Ccyl, compare it to known value for the copper 0.093(our cylinder is made out of copper). |Ceyl -0.093| % : · 100% 0.093arrow_forward4arrow_forwardInclude simple schematic , process digram , and assumptionarrow_forward
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning