Numerical Methods For Engineers, 7 Ed
Numerical Methods For Engineers, 7 Ed
7th Edition
ISBN: 9789352602131
Author: Canale Chapra
Publisher: MCGRAW-HILL HIGHER EDUCATION
bartleby

Videos

Textbook Question
Book Icon
Chapter 24, Problem 26P

The heat flux q is the quantity of heat flowing through a unit area of a material per unit time. It can be computed with Fourier's law,

J = k d T d x

Where J has units of J / m 2 /s or  W / m 2 and k is a coefficient of thermal conductivity that parameterizes the heat-conducting properties of the material and has units of W / ( ° C m ) . T = temperature  ( ° C ) ;  and  x = distance (m) along the path of heat flow. Fourier's law is used routinely by architectural engineers to determine heat flow through walls. The following temperatures are measuredfrom the surface ( x = 0 ) into a stone wall:

x, cm 0 0.08 0.16
T, ° C 20 17 15

If the flux at x = 0 is 60  W / m 2 , compute k,

Blurred answer
Students have asked these similar questions
Q8): To find how much heat is required to bring a kettle of water to its boiling point, you are asked to calculate the specific heat of water at 61°C. The specific heat of water is given as a function of time in Table below. Temperature, T Specific heat, C₂ (°C) J kg-°C 22 42 52 82 100 4181 4179 4186 4199 4217 Determine the value of the specific heat at 7=61°C using the direct T method of interpolation and a third order polynomial. Find the absolute relative approximate error for the third order polynomial approximation (Lagrange Method).
Kinetic energy of a fluid flow can be computed by pv - vdV, where p(r, y, z) and v(z, y, z) are the pointwise fluid density and velocity, respectively. Fluid with uniform density 9. flows in the domain bounded by z + 2 9 and 0
Pravinbhai

Chapter 24 Solutions

Numerical Methods For Engineers, 7 Ed

Ch. 24 - One of your colleagues has designed a new...Ch. 24 - Video an giography is used to measure blood flow...Ch. 24 - 24.14 Perform the same computation as in Sec....Ch. 24 - Perform the same computation as in Sec. 24.2, but...Ch. 24 - 24.16 As in Sec. 24.2, compute F using the...Ch. 24 - Stream cross-sectional areas (A) are required for...Ch. 24 - 24.18 As described in Prob. 24.17, the...Ch. 24 - 24.21 A transportation engineering study requires...Ch. 24 - 24.22 A wind force distributed against the side of...Ch. 24 - 24.23 Water exerts pressure on the upstream ...Ch. 24 - 24.24 To estimate the size of a new dam, you have...Ch. 24 - The data listed in the following table gives...Ch. 24 - The heat flux q is the quantity of heat flowing...Ch. 24 - 24.27 The horizontal surface area of a lake at a...Ch. 24 - 24.28 Perform the same computation as in Sec....Ch. 24 - 24.29 Repeat Prob. 24.28, but use five...Ch. 24 - Repeat Prob. 24.28, but use Romberg integration to...Ch. 24 - Faradays law characterizes the voltage drop across...Ch. 24 - 24.32 Based on Faraday’s law (Prob. 24.31), use...Ch. 24 - Suppose that the current through a resistor is...Ch. 24 - If a capacitor initially holds no charge, the...Ch. 24 - 24.35 Perform the same computation as in Sec....Ch. 24 - 24.36 Repeat Prob. 24.35, but use (a) Simpson’s ...Ch. 24 - 24.37 Compute work as described in Sec. 24.4, but...Ch. 24 - As was done in Sec. 24.4, determine the work...Ch. 24 - 24.39 The work done on an object is equal to the...Ch. 24 - The rate of cooling of a body (Fig. P24.40) can be...Ch. 24 - 24.41 A rod subject to an axial load (Fig....Ch. 24 - If the velocity distribution of a fluid flowing...Ch. 24 - 24.43 Using the following data, calculate the work...Ch. 24 - 24.44 A jet fighter’s position on an aircraft...Ch. 24 - 24.45 Employ the multiple-application Simpson’s...Ch. 24 - The upward velocity of a rocket can be computed by...Ch. 24 - Referring to the data from Problem 20.61, find the...Ch. 24 - Fully developed flow moving through a 40-cm...Ch. 24 - Fully developed flow of a Bingham plasticfluid...Ch. 24 - 24.50 The enthalpy of a real gas is a ...Ch. 24 - Given the data below, find the isothermal work...Ch. 24 - 24.52 The Rosin-Rammler-Bennet (RRB) equation is...Ch. 24 - For fluid flow over a surface, the heat flux to...Ch. 24 - The pressure gradient for laminar flow through a...Ch. 24 - 24.55 Velocity data for air are collected at...
Knowledge Booster
Background pattern image
Advanced Math
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Intro to the Laplace Transform & Three Examples; Author: Dr. Trefor Bazett;https://www.youtube.com/watch?v=KqokoYr_h1A;License: Standard YouTube License, CC-BY