
Concept explainers
(a)
The percent increase in temperature.

Answer to Problem 25A
Percentage increase in temperature is
Explanation of Solution
Given information:
Initial temperature of heated steel is
Calculation:
As per the given information initial temperature is
So, change in temperature
Need to find the percentage change in the temperature.
As we know the proportion to find percentage is given as
Here, initial temperature will be base
Putting these value in standard proportion,
Hence, percentage increase in temperature is
(b)
The percent increase in temperature.

Answer to Problem 25A
Percentage increase in temperature is
Explanation of Solution
Given information:
Initial temperature of heated steel is
Calculation:
As per the given information initial temperature is
So, change in temperature
Need to find the percentage change in the temperature.
As we know the proportion to find percentage is given as
Here, initial temperature will be base
Putting these value in standard proportion,
Hence, percentage increase in temperature is
(c)
The percent increase in temperature.

Answer to Problem 25A
Percentage increase in temperature is
Explanation of Solution
Given information:
Initial temperature of heated steel is
Calculation:
As per the given information initial temperature is
So, change in temperature
Need to find the percentage change in the temperature.
As we know the proportion to find percentage is given as
Here, initial temperature will be base
Putting these value in standard proportion,
Hence, percentage increase in temperature is
Want to see more full solutions like this?
Chapter 24 Solutions
Mathematics For Machine Technology
- match the equation to it's respective directional field in the image, justify your answer a. dy/dx=x-1 b. dy/dx=1 - y^2 c. dy/dx=y^2 - x^2 d. dy/dx=1-x e. dy/dx=1-y f. dy/dx=x^2 - y^2 g. dy/dx=1+y h. dy/dx=y^2 - 1arrow_forward4. The runway at the Piarco International airport has an equation of -3(x-2y) = 6. If the Priority Bus Route passes through the geometric coordinate (1,-9) and is perpendicular to the runway at the Piarco International airport. Determine the following: a. State two geometric coordinates which the runway at the Piarco International airport passes through. b. Derive the equation of the Priority Bus Route. [2 marks] [6 marks]arrow_forwardQ4*) Find the extremals y, z of the the functional I = 1 (2yz - 2x² + y²² 12 - 212) dx, with y(0) = 0, y(1) = 1, z(0) = 0, ≈(1) = 0.arrow_forward
- Solve the following initial value problem over the interval from t= 0 to 2 where y(0)=1. dy yt² - 1.1y dt Using Euler's method with h=0.5 and 0.25.arrow_forwardQ5*) Write down an immediate first integral for the Euler-Lagrange equation for the integral I = = F(x, y, y″) dx. Hence write down a first integral of the Euler-Lagrange equation for the integral I 1 = √(xy ² + x³y²) dx. Find the general solution of this ordinary differential equation, seeking first the complementary function and then the particular integral. (Hint: the ODE is of homogeneous degree. And, for the particular integral, try functions proportional to log x.)arrow_forwardQ2*) In question P3 we showed that a minimal surface of revolution is given by revolution (about the x-axis) of the catenary, with equation y = C cosh ((x – B)/C). - (a) Suppose, without loss of generality, that the catenary passes through the initial point P = (x1,y1) = (0, 1). First deduce an expression for the one-parameter family of catenaries passing through point P. Next calculate the value of x at which y takes its minimum value. By using the inequality cosh > √2 (you might like to think about how to prove this), show that there are points Q for which it is impossible to find a catenary passing through both P and Q. In particular, show that it is impossible to find a catenary joining the points (0, 1) and (2, 1). (b) A minimal surface of revolution can be realised experimentally by soap films attached to circular wire frames (see this link and this link for examples). The physical reason for this is that the surface tension, which is proportional to the area, is being minimised.…arrow_forward
- Q3*) Consider the integral I Yn, Y₁, Y2, . . ., Y'n) dã, [F(x, Y 1, Y2, · · Yng) = - where y1, 2, ...y are dependent variables, dependent on x. If F is not explicitly dependent on x, deduce the equivalent of the Beltrami identity. Optional: Give an example of a function F(y1, Y2, Y₁, y2), and write down the Euler-Lagrange equations and Beltrami Identity for your example. Does having this Beltrami Identity help solve the problem?arrow_forwardSolve the following problem over the interval from x=0 to 1 using a step size of 0.25 where y(0)= 1. dy = dt (1+4t)√√y (a) Euler's method. (b) Heun's methodarrow_forwardNo chatgpt pls will upvotearrow_forward
- Mathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,Algebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal LittellGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw Hill


