University Physics (14th Edition)
14th Edition
ISBN: 9780133969290
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 24, Problem 24.75PP
Suppose that the change in Vm was caused by the entry of Ca2+ instead of Na+. How many Ca2+ ions would have to enter the cell per unit membrane to produce the change? (a) Half as many as for Na+; (b) the same as for Na+; (c) twice as many as for Na+; (d) cannot say without knowing the inside and outside concentrations of Ca2+.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
please help
Assume a length of axon membrane of about 0.10 m is excited by an action potential length excited = nerve speed × pulse duration = 50.0 m/s × 0.0020 s = 0.10 m). In the resting state, the outer surface of the axon wall is charged positively with k* ions and the inner wall has an equal and opposite charge of negative
organic ions, as shown in the figure below. Model the axon as a parallel-plate capacitor and take C = ke,A/d and Q = CAV to investigate the charge as follows. Use
typical values for a cylindrical axon of cell wall thickness d = 1.4 x 10-8 m, axon radius r = 1.4 x 101 um, and cell-wall dielectric constant k = 2.2.
Assume a length of axon membrane of about 0.10 m is excited by an action potential (length excited = nerve speed × pulse duration = 50.0 m/s × 0.0020 s = 0.10 m). In the resting state, the outer surface of the axon wall is charged positively with K+ ions and the inner wall has an equal and opposite charge of negative organic ions, as shown in the figure below. Model the axon as a parallel-plate capacitor and take C = ??0A/d and Q = CΔV to investigate the charge as follows. Use typical values for a cylindrical axon of cell wall thickness d = 1.6 ✕ 10−8 m, axon radius r = 1.9 ✕ 101 ?m, and cell-wall dielectric constant ? = 2.6.
(a) Calculate the positive charge on the outside of a 0.10-m piece of axon when it is not conducting an electric pulse. (Assume an initial potential difference of 7.0 ✕ 10−2 V.)?CHow many K+ ions are on the outside of the axon assuming an initial potential difference of 7.0 ✕ 10−2 V??K+ ions
(b) How much positive charge must flow through the cell membrane to reach…
Chapter 24 Solutions
University Physics (14th Edition)
Ch. 24 - Equation (24.2) shows that the capacitance of a...Ch. 24 - Suppose several different parallel-plate...Ch. 24 - Suppose the two plates of a capacitor have...Ch. 24 - To store the maximum amount of energy in a...Ch. 24 - In the parallel-plate capacitor of Fig. 24.2,...Ch. 24 - A parallel-plate capacitor is charged by being...Ch. 24 - A parallel-plate capacitor is charged by being...Ch. 24 - Two parallel-plate capacitors, identical except...Ch. 24 - The charged plates of a capacitor attract each...Ch. 24 - You have two capacitors and want to connect them...
Ch. 24 - As shown in Table 24.1, water has a very large...Ch. 24 - Is dielectric strength the same thing as...Ch. 24 - A capacitor made of aluminum foil strips separated...Ch. 24 - Suppose you bring a slab of dielectric close to...Ch. 24 - The freshness of fish can be measured by placing a...Ch. 24 - Electrolytic capacitors use as their dielectric an...Ch. 24 - In terms of the dielectric constant K, what...Ch. 24 - A parallel-plate capacitor is connected to a power...Ch. 24 - Liquid dielectrics that have polar molecules (such...Ch. 24 - A conductor is an extreme case of a dielectric,...Ch. 24 - The two plates of a capacitor are given charges Q....Ch. 24 - The plates of a parallel-plate capacitor are 2.50...Ch. 24 - The plates of a parallel-plate capacitor are 3.28...Ch. 24 - A parallel-plate air capacitor of capacitance 245...Ch. 24 - Cathode-ray-tube oscilloscopes have parallel metal...Ch. 24 - A 10.0-F parallel-plate capacitor with circular...Ch. 24 - A 5.00-F parallel-plate capacitor is connected to...Ch. 24 - A parallel-plate air capacitor is to store charge...Ch. 24 - A 5.00-pF, parallel-plate, air-filled capacitor...Ch. 24 - A capacitor is made from two hollow, coaxial, iron...Ch. 24 - A cylindrical capacitor consists of a solid inner...Ch. 24 - A spherical capacitor contains a charge of 3.30 nC...Ch. 24 - A cylindrical capacitor has an inner conductor of...Ch. 24 - A spherical capacitor is formed from two...Ch. 24 - Figure E24.14 shows a system of four capacitors,...Ch. 24 - BIO Electric Eels. Electric eels and electric fish...Ch. 24 - For the system of capacitors shown in Fig. E24.16,...Ch. 24 - In Fig. E24.17, each capacitor has C = 4.00 F and...Ch. 24 - In Fig. 24.8a, let C1 = 3.00 F, C2 = 5.00F, and...Ch. 24 - In Fig. 24.9a, let C1 = 3.00 F, C2 = 5.00 F, and...Ch. 24 - In Fig. E24.20, C1 = 6.00 F, C2 = 3 00 F, and C3 =...Ch. 24 - For the system of capacitors shown in Fig. E24.21,...Ch. 24 - Suppose the 3-F capacitor in Fig. 24.10a were...Ch. 24 - A 5.80-F, parallel-plate, air capacitor has a...Ch. 24 - A parallel-plate air capacitor has a capacitance...Ch. 24 - An air capacitor is made from two flat parallel...Ch. 24 - A parallel-plate vacuum capacitor has 8.38 J of...Ch. 24 - You have two identical capacitors and an external...Ch. 24 - For the capacitor net-work shown in Fig. E24.28,...Ch. 24 - For the capacitor net-work shown in Fig. E24.29,...Ch. 24 - A 0.350-m-long cylindrical capacitor consists of a...Ch. 24 - A cylindrical air capacitor of length 15.0 m...Ch. 24 - A capacitor is formed from two concentric...Ch. 24 - A 12.5-F capacitor is connected to a power supply...Ch. 24 - A parallel-plate capacitor has capacitance C0 =...Ch. 24 - Two parallel plates have equal and opposite...Ch. 24 - A budding electronics hobbyist wants to make a...Ch. 24 - The dielectric to be used in a parallel-plate...Ch. 24 - BIO Potential in Human Cells. Some cell walls in...Ch. 24 - A constant potential difference of 12 v is...Ch. 24 - Polystyrene has dielectric constant 2.6 and...Ch. 24 - When a 360-nF air capacitor (1 nF = 109F) is...Ch. 24 - A parallel-plate capacitor has capacitance C =...Ch. 24 - A parallel-plate capacitor has the volume between...Ch. 24 - A parallel-plate capacitor has plates with area...Ch. 24 - Electronic flash units for cameras contain a...Ch. 24 - A parallel-plate air capacitor is made by using...Ch. 24 - In one type of computer keyboard, each key holds a...Ch. 24 - BIO Cell Membranes. Cell membranes (the walled...Ch. 24 - A 20.0-F capacitor is charged to a potential...Ch. 24 - In Fig. 24.9a, let C1 = 9.0 F, C2 = 4.0 F, and Vab...Ch. 24 - For the capacitor network shown in Fig. P24.51,...Ch. 24 - In Fig. E24.17, C1 = 6.00 F, C2 = 3.00 F, C3 =...Ch. 24 - In Fig. P24.53, C1 = C5 = 8.4 F and C2 = C3 = C4 =...Ch. 24 - Current materials-science technology allows...Ch. 24 - In Fig. E24.20, C1 = 3.00 F and Vab = 150 V. The...Ch. 24 - The capacitors in Fig. P24.56 are initially...Ch. 24 - Three capacitors having capacitances of 8.4, 8.4,...Ch. 24 - Capacitance of a Thundercloud. The charge center...Ch. 24 - In Fig. P24.59, each capacitance C1 is 6.9 F, and...Ch. 24 - Each combination of capacitors between points a...Ch. 24 - A parallel-plate capacitor with only air between...Ch. 24 - An air capacitor is made by using two flat plates,...Ch. 24 - A potential difference Vab = 48.0 V is applied...Ch. 24 - CALC The inner cylinder of a long, cylindrical...Ch. 24 - A parallel-plate capacitor has square plates that...Ch. 24 - A parallel-plate capacitor is made from two plates...Ch. 24 - Three square metal plates A, B, and C, each 12.0...Ch. 24 - A fuel gauge uses a capacitor to determine the...Ch. 24 - DATA Your electronics company has several...Ch. 24 - DATA You are designing capacitors for various...Ch. 24 - DATA You are conducting experiments with an...Ch. 24 - Two square conducting plates with sides of length...Ch. 24 - BIO THE ELECTRIC EGG. Upon fertilization, the eggs...Ch. 24 - Suppose that the egg has a diameter of 200 m. What...Ch. 24 - Suppose that the change in Vm was caused by the...Ch. 24 - What is the minimum amount of work that must be...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Express the unit vectors in terms of (that is, derive Eq. 1.64). Check your answers several ways Also work o...
Introduction to Electrodynamics
3. What is free-fall, and why does it make you weightless? Briefly describe why astronauts are weightless in th...
The Cosmic Perspective (8th Edition)
Smaller chunks of asteroids are sent hurling toward Earth much more frequently than larger chunks of asteroids....
Conceptual Integrated Science
What do we mean by astrobiology? What are the major areas of research in astrobiology?
Life in the Universe (4th Edition)
The pV-diagram of the Carnot cycle.
Sears And Zemansky's University Physics With Modern Physics
23. A –10 nC charge is located at the origin.
a. What are the strengths of the electric fields at the positions...
College Physics: A Strategic Approach (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Assume a length of axon membrane of about 0.10 m is excited by an action potential (length excited = nerve speed × pulse duration = 50.0 m/s × 0.0020 s = 0.10 m). In the resting state, the outer surface of the axon wall is charged positively with K+ ions and the inner wall has an equal and opposite charge of negative organic ions, as shown in the figure below. Model the axon as a parallel-plate capacitor and take C = ??0A/d and Q = CΔV to investigate the charge as follows. Use typical values for a cylindrical axon of cell wall thickness d = 1.1 ✕ 10−8 m, axon radius r = 2.0 ✕ 101 ?m, and cell-wall dielectric constant ? = 2.7. A diagram shows a collection of positive and negative charges in and around an axon. The diagram is divided into three sections, one on top of the other. The top section is labeled "External fluid". A row of positive charges labeled "Positive charge layer" lies along the bottom side of this section. Above the row of positive charges, there is an even mixture of…arrow_forward12. (a) Using Eq. AQ=CAV and the data in the Table, calculate the number of ions entering the axon during the action potential, per meter of nonmyelinated axon length. (The charge on the ion is 1.6 x 10-19 coulomb.) (b) During the resting state of the axon, typical concentrations of sodium and potassium ions inside the axon are 15 and 150 millimole/liter, respectively. From the data in the Table, calculate the number of ions per meter length of the axon. Table 13.1 Properties of Sample Axons Hint: 1 F (farad) = 1coulomb/1 volt Property Nonmyelinated axon Myelinated axon Axon radius 5 x 10-m 5 x 10-6 m 1 mole /liter = 6.02 x 1020 particles (ions, atoms, etc. ) Resistance per unit length of fluid cm 6.37 x 10°2/m 6.37 x 10°2/m both inside and outside axon (r) Conductivity per unit length of axon membrane (gm) 1.25 x 10-4 mho/m In the resting state, the axon voltage is -70mV. During the pulse, the voltage changes to about +30mV, resulting in a net voltage change across the membrane of 100…arrow_forwardThe velocity of spike propagation is proportional to the following combination of factors: 1 a C, V R„R, m Where a is the radius of the axon, Rm and R; are specific resistances of the membrane and the internal buffer, respectively. If we double the radius and simultaneously increase the concentration of salt inside the axon twice (i.e. R; decreases two times), by how many fold will the velocity change?arrow_forward
- As time progresses, all quantities will decay exponentially: Q ( t ) = Q0 e -t/RC. Q0 is 14.4 uC, but what R must be used? (Calculate its value in Ohms.) Please see photos for more detail.arrow_forward(III) During an action potential, Na* ions move into the cell at a rate of about 3 × 10-7 mol/m² - s. How much power must be produced by the "active Na* pumping" system to produce this flow against a +30-mV potential difference? Assume that the axon is 10 cm long and 20 µm in diameter.arrow_forwardIn (Figure 1), let Cı = 2.90 µF, C2 = 5.40 F, and Vab = +63.0 V.arrow_forward
- Suppose that you apply an external voltage (from a battery) to a pn junction where the n-doped part is connected to the positive terminal of the battery while the p-side is connected to the negative terminal of the battery.(a) What happens to the depletion region and why?(b) What happens to the internal electric field?(c) What happens to the current across the junction?arrow_forwardA single ion channel is selectively permeable to K+ and has a resistance of 2.20 G-ohm. During an experiment, the channel is open for approximately 1.15 ms while the voltage across the channel is maintained at +85.5 mV with a patch clamp. How many ions, N, travel through the channel?arrow_forwardAssume the axon had a diameter of 30 um and was 5 cm long. The capacitance of this axon would bearrow_forward
- Figure E21.22 shows the bonding of cytosine and guanine. The O—H and H—N distances are each 0.110 nm. In this case, assume that the bonding is due only to the forces along the O—H—O, N—H—N, and O—H—N combinations, and assume also that these three combinations are parallel to each other. Calculate thenet force that cytosine exerts on guanine due to the preceding three combinations. Is this force attractive or repulsive? Help please. I have been stuck for hours nowarrow_forwardIf the current travels before most of it have leakage out through membrane for unmyelinated axon is = 0.08 cm, then the radius of the axon is: (Rm = 0.2 2.m², pa = 2 N.m and Cm = 10° F.m*) 5 um 12.8 um O 12 um 1.8 um 3.2 umarrow_forward4arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
DC Series circuits explained - The basics working principle; Author: The Engineering Mindset;https://www.youtube.com/watch?v=VV6tZ3Aqfuc;License: Standard YouTube License, CC-BY