Concept explainers
Three square metal plates A, B, and C, each 12.0 cm on a side and 1.50 mm thick, are arranged as in Fig. P24.67. The plates are separated by sheets of paper 0.45 mm thick and with dielectric constant 4.2. The outer plates are connected together and connected to point b. The inner plate is connected to point a. (a) Copy the diagram and show by plus and minus signs the charge distribution on the plates when point a is maintained at a positive potential relative to point b. (b) What is the capacitance between points a and b?
Figure P24.67
Want to see the full answer?
Check out a sample textbook solutionChapter 24 Solutions
University Physics with Modern Physics, Books a la Carte Edition; Modified MasteringPhysics with Pearson eText -- ValuePack Access Card -- for ... eText -- Valuepack Access Card (14th Edition)
Additional Science Textbook Solutions
College Physics
Life in the Universe (4th Edition)
Modern Physics
Physics for Scientists and Engineers with Modern Physics
Essential University Physics: Volume 2 (3rd Edition)
- Three charged spheres are at rest in a plane as shown in Figure P23.70. Spheres A and B are fixed, but sphere C is attached to the ceiling by a lightweight thread. The tension in the string is 0.240 N. Spheres A and B have charges qA = 28.0 nC and qB = 28.0 nC. What charge is carried by sphere C?arrow_forwardFour charged particles are at rest at the corners of a square (Fig. P26.14). The net charges are q1 = q2 = +2.65 C and q3 = q4 = 5.15 C. The distance between particle 1 and particle 3 is r13 = 1.75 cm. a. What is the electric potential energy of the four-particle system? b. If the particles are released from rest, what will happen to the system? In particular, what will happen to the systems kinetic energy?arrow_forwardA very large disk lies horizontally and has surface charge density = 2.3 nC/m2. An electron is released at the surface. (It begins from rest and moves vertically upward.) Ignoring gravity, find the speed of the electron when it is 1.0 mm above the disk.arrow_forward
- Two small spherical conductors are suspended from light-weight vertical insulating threads. The conductors are brought into contact (Fig. P23.50, left) and released. Afterward, the conductors and threads stand apart as shown at right. a. What can you say about the charge of each sphere? b. Use the data given in Figure P23.50 to find the tension in each thread. c. Find the magnitude of the charge on each sphere. Figure P23.50arrow_forwardProblems 72, 73, and 74 are grouped. 72. A Figure P26.72 shows a source consisting of two identical parallel disks of radius R. The x axis runs through the center of each disk. Each disk carries an excess charge uniformly distributed on its surface. The disk on the left has a total positive charge Q, and the disk on the right has a total negative charge Q. The distance between the disks is 3R, and point A is 2R from the positively charged disk. Find an expression for the electric potential at point A between the disks on the x axis. Approximate any square roots to three significant figures. FIGURE P26.72 Problems 72, 73, and 74.arrow_forwardFour charged particles are at rest at the corners of a square (Fig. P26.14). The net charges are q1 = q2 = 2.65 C and q3 = q4 = 5.15 C. The distance between particle 1 and particle 3 is r13 = 1.75 cm. a. What is the electric potential energy of the four-particle system? b. If the particles are released from rest, what will happen to the system? In particular, what will happen to the systems kinetic energy as their separations become infinite? FIGURE P26.14 Problems 14, 15, and 16.arrow_forward
- = A point-like charge Q = 20.5 µC is embedded into a dielectric material with constant k magnitude of E-field and energy density at distance d = 0.7 m from the charge. The magnitude of E-field, E = 1.0756097 x Units Select an answer ✓ The energy density, u Find the force on a test charge q = 51.5 µC placed at the same distance 0.7 m from Q. The force on the test charge, Fq = = Units Select an answer ✓ Units Select an answer 20. Fiarrow_forwardThe figure (Figure 1) shows a thin rod of length I with total charge Q. Figure L ++ P 1 of 1 Verify that your expression has the expected behavior if r > L Express your answer in terms of variables Q, r and constants , ED. E Submit Part C IVE ΑΣΦ a x² Xb√x x x X.10n E www 21.7.10³ Previous Answers Request Answer Evaluate E at r = 3.9 cm if L = 5.0 cm and Q = 2.6 nC. Express your answer with the appropriate units. * Incorrect; Try Again; 9 attempts remaining The correct answer involves the variable Q, which was not part of your answer. μÅ Value Submit Request Answer Unitsarrow_forwardTwo identical balls each having a density p are suspended from a common point by two insulating strings of equal length. Both the balls have equal mass and charge. In equilibrium, each string makes an angle with the vertical. Now, both the balls are immersed in a liquid. As a result, the angle does not change. The density of liquid is o. Find the dielectric constant of the liquid.arrow_forwardQuestion 6: The plane y = 0 distinguishes two lossless dielectric zones with dielectric constants ɛr1 = 2 and ɛr2 = 3. 1. If the region is known as E ****1 = x2 - ŷ3 + bilin5, calculate the electric field and displacement vectors E****2 and D****2 in region 2. (There is no load density on the interface.arrow_forwardMost workers in nanotechnology are actively monitored for excess static charge buildup. The human body acts like an insulator as one walks across a carpet, collecting −50 nC per step. What charge buildup will a worker in a manufacturing plant accumulate if she walks 21 steps? charge buildup from 21 steps: nC How many electrons are present in that amount of charge? electrons present: If a delicate manufacturing process can be damaged by an electrical discharge greater than 1012 electrons, what is the maximum number of complete steps that any worker should be allowed to take before touching the components? maximum number of steps:arrow_forwardTwo square plates of sides { are placed parallel to each other with separation d as suggested in Figure P26.65. You may assume d is much less than €. The plates carry uniformly distributed static charges +Q. and -Qo. Á block of metal has width €, length €, and thickness slightly less than d. It is inserted a distance x into the space between the plates. The charges on the plates remain uniformly distributed as the block slides in. In a static situation, a metal prevents an electric field from penetrating inside it. The metal can be thought of as a perfect dielectric, withK - 0. (a) Calculate the stored energy in the system as a function of x. (b) Find the direction and magnitude of the force that acts on the metallic block. (c) The area of the advancing front face of the block is essen- tially equal to ld. Considering the force on the block as acting on this face, find the stress (force per area) on it. (d) Express the energy density in the electric field between the charged plates in…arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning