Concept explainers
Calculate the minimum difference in standard electrode potentials needed to lower the concentration of the metal M1 to 2.00 × 10-4 M ¡n a solution that is 1.00 × 10-1 M in the less-reducible metal M2 where (a) M2 is univalent and M1 is divalent. (b) M2 and M1 are both divalent, (c) M2 is trivalent and M1 is univalent, (d) M2is divalent and M1 is univalent, (e) M2 is divalent and M1 ¡s trivalent.
(a)
Interpretation:
The minimum difference in the standard electrode potential needed to lower the concentration of metal
Concept introduction:
The electrode potential of the cell is defined as the potential of cell consisting of two electrodes. Therefore at anode the oxidation occurs and at cathode reduction occurs. The Nernst equation is used to determine the electromotive force and the reduction potential of the half life cell.
Answer to Problem 24.2QAP
The minimum difference in the standard electrode potential needed to lower the concentration of metal
Explanation of Solution
Given information:
The concentration of the metal
Write the expression for the Nernst at room temperature.
Here, the half-life potential is
Write the expression for the minimum difference in the standard electrode potential.
Substitute
Here, the initial energy is
Substitute
Here, the final energy is
Write the expression for the relation between the initial energy and final energy.
Substitute
Substitute
The minimum difference in the standard electrode potential needed to lower the concentration of metal
(b)
Interpretation:
The minimum difference in the standard electrode potential needed to lower the concentration of metal
Concept introduction:
The electrode potential of the cell is defined as the potential of cell consisting of two electrodes. Therefore at anode the oxidation occurs and at cathode reduction occurs. The Nernst equation is used to determine the electromotive force and the reduction potential of the half life cell.
Answer to Problem 24.2QAP
The minimum difference in the standard electrode potential needed to lower the concentration of metal
Explanation of Solution
The concentration of the metal
Substitute
Here, the initial energy is
Substitute
Here, the final energy is
Substitute
Substitute
The minimum difference in the standard electrode potential needed to lower the concentration of metal
(c)
Interpretation:
The minimum difference in the standard electrode potential needed to lower the concentration of metal
Concept introduction:
The electrode potential of the cell is defined as the potential of cell consisting of two electrodes. Therefore at anode the oxidation occurs and at cathode reduction occurs. The Nernst equation is used to determine the electromotive force and the reduction potential of the half life cell.
Answer to Problem 24.2QAP
The minimum difference in the standard electrode potential needed to lower the concentration of metal
Explanation of Solution
The concentration of the metal
Substitute
Here, the initial energy is
Substitute
Here, the final energy is
Substitute
Substitute
The minimum difference in the standard electrode potential needed to lower the concentration of metal
(d)
Interpretation:
The minimum difference in the standard electrode potential needed to lower the concentration of metal
Concept introduction:
The electrode potential of the cell is defined as the potential of cell consisting of two electrodes. Therefore at anode the oxidation occurs and at cathode reduction occurs. The Nernst equation is used to determine the electromotive force and the reduction potential of the half life cell.
Answer to Problem 24.2QAP
The minimum difference in the standard electrode potential needed to lower the concentration of metal
Explanation of Solution
The concentration of the metal
Substitute
Here, the initial energy is
Substitute
Here, the final energy is
Substitute
Substitute
The minimum difference in the standard electrode potential needed to lower the concentration of metal
(e)
Interpretation:
The minimum difference in the standard electrode potential needed to lower the concentration of metal
Concept introduction:
The electrode potential of the cell is defined as the potential of cell consisting of two electrodes. Therefore at anode the oxidation occurs and at cathode reduction occurs. The Nernst equation is used to determine the electromotive force and the reduction potential of the half life cell.
Answer to Problem 24.2QAP
The minimum difference in the standard electrode potential needed to lower the concentration of metal
Explanation of Solution
The concentration of the metal
Substitute
Here, the initial energy is
Substitute
Here, the final energy is
Substitute
Substitute
The minimum difference in the standard electrode potential needed to lower the concentration of metal
Want to see more full solutions like this?
Chapter 24 Solutions
Principles of Instrumental Analysis
- The Ksp for lead iodide ( Pbl₂) is 1.4 × 10-8. Calculate the solubility of lead iodide in each of the following. a. water Solubility = mol/L b. 0.17 M Pb(NO3)2 Solubility = c. 0.017 M NaI mol/L Solubility = mol/Larrow_forwardPleasssssseeee solve this question in cheeemsirty, thankss sirarrow_forwardPleasssssseeee solve this question in cheeemsirty, thankss sirarrow_forward
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning