(a)
Interpretation:
Kinetic Energy of an
Concept Introduction:
Nuclear binding energy: It is the energy that requires for the breaking one mole of nuclei of an element to its individual nucleons.
Kinetic energy of a particle can be using the below mentioned formula,
(a)

Explanation of Solution
Given data is shown below:
Kinetic Energy of an
Kinetic Energy of an
(b)
Interpretation:
Number of
Concept Introduction:
Nuclear binding energy: It is the energy that requires for the breaking one mole of nuclei of an element to its individual nucleons.
Nuclear binding energy can be calculated by Einstein’s mass energy equivalence relationship that is,
(b)

Explanation of Solution
Given data is shown below:
Kinetic Energy of an
A kilogram of
Energy produced by the annihilation of one
Number of
Number of
(c)
Interpretation:
Energy released during the fusion of 4 Hydrogen atoms forming Helium-4 has to be determined using the given data.
Concept Introduction:
Nuclear binding energy: It is the energy that requires for the breaking one mole of nuclei of an element to its individual nucleons.
Nuclear binding energy can be calculated by Einstein’s mass energy equivalence relationship that is,
Change in mass of a given reaction can be determined as given,
(c)

Explanation of Solution
Given data is shown below:
- Calculate the mass difference for the formation of Helium-4:
Mass difference of the reaction can be calculated as given,
Mass difference during the fusion of 4 Hydrogen atoms is
- Calculate total mass difference in kilogram:
Mass difference during the fusion of
- Calculate energy released:
Energy released is calculated as given below,
Energy released during the fusion of 4 Hydrogen atoms forming Helium-4 is
(d)
Interpretation:
Increase in energy produce by the fusion of part (c) comparing with
Concept Introduction:
Nuclear binding energy: It is the energy that requires for the breaking one mole of nuclei of an element to its individual nucleons.
Nuclear binding energy can be calculated by Einstein’s mass energy equivalence relationship that is,
Change in mass of a given reaction can be determined as given,
(d)

Explanation of Solution
In part (b), Energy produced by the annihilation of one
Therefore, energy generated by
In part (c), Energy released during the fusion of 4 Hydrogen atoms forming Helium-4 is
Increase in energy is determined as follows,
Energy increase is
(e)
Interpretation:
Energy released when
Concept Introduction:
Nuclear binding energy: It is the energy that requires for the breaking one mole of nuclei of an element to its individual nucleons.
Nuclear binding energy can be calculated by Einstein’s mass energy equivalence relationship that is,
Change in mass of a given reaction can be determined as given,
(e)

Explanation of Solution
Given data is shown below:
- Calculate the mass difference for the formation of Helium-4:
Mass difference of the reaction can be calculated as given,
Mass difference during the fusion of 3 Hydrogen atoms is
- Calculate total mass difference in kilogram:
Mass difference during the fusion of
- Calculate energy released:
Energy released is calculated as given below,
Energy released during the fusion of 3 Hydrogen atoms forming Helium-3 is
Energy released during the fusion of 4 Hydrogen atoms forming Helium-4 is
Therefore, Chief Engineer should advise Captain not to change the technology and to keep the current technology.
Want to see more full solutions like this?
Chapter 24 Solutions
MCGRAW: CHEMISTRY THE MOLECULAR NATURE
- 8:16 PM Sun Mar 30 K Draw the major product of this reaction. Ignore inorganic byproducts. Proble 1. CH3MgBr 2. H3O+ F Drawingarrow_forwardо но оarrow_forwardName the major organic product of the following action of 4-chloro-4-methyl-1-pentanol in neutral pollution 10+ Now the product. The product has a molecular formula f b. In a singly hain, the starting, material again converts into a secule with the molecular kormula CIO. but with comply Draw the major organic structure inhalationarrow_forward
- Macmillan Learning Alcohols can be oxidized by chromic acid derivatives. One such reagent is pyridinium chlorochromate, (C,H,NH*)(CICTO3), commonly known as PCC. Draw the proposed (neutral) intermediate and the organic product in the oxidation of 1-butanol by PCC when carried out in an anhydrous solvent such as CH₂C₁₂. PCC Intermediate OH CH2Cl2 Draw the intermediate. Select Draw Templates More с H Cr о Product Draw the product. Erase Select Draw Templates More H о Erasearrow_forwardIf I have 1-bromopropene, to obtain compound A, I have to add NaOH and another compound. Indicate which compound that would be. A C6H5 CH3arrow_forwardProvide the reagents for the following reactions.arrow_forward
- If I have 1-bromopropene, to obtain compound Z, I have to add two compounds A1 and A2. Indicate which compounds are needed. P(C6H5)3arrow_forwardDraw the major product of this reaction. Ignore inorganic byproducts. Assume that the water side product is continuously removed to drive the reaction toward products. O CH3CH2NH2, TSOH Select to Draw >arrow_forwardPredict the major organic product(s) for the following reaction.arrow_forward
- Predict the major organic product(s) for the following reactions.arrow_forwardProvide the complete mechanism for the reactions below. You must include appropriate arrows,intermediates, and formal charges.arrow_forwardIndicate the products obtained by reacting fluorobenzene with a sulfonitric mixture.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





