a
To evaluate: The portfolio’s performance and plot the monthly values of alpha plus residual return.
Introduction:
Alpha: Symbolically, alpha is denoted as ‘a’. It is supposed to be the difference amount that is determined after deducting the actual return from the expected return. The selection of the portfolio is made when the alpha of a portfolio is the highest.
Treynor ratio: It is named after its creator - Jack Treynor, who is an American economist. Treynor ratio tries to explore the amount of return which is generated in excess. This also is calculated for risk per unit.
a
Answer to Problem 22PS
The consumer industry has a record of good performance than the manufacturing. Even then its performance can be judged as below the benchmark.
Explanation of Solution
The information given to us is as follows:
Month | Consumer | Manufacturing | Risk-free rate | Rm-RF | Market return | SMB | HML |
2012-08 | 1.84 | 1.82 | 0.9 | 2.58 | 3.48 | 0.5 | 0.79 |
2012-09 | 1.71 | 2.44 | 0.7 | 2.69 | 3.39 | 0.72 | 1.36 |
2012-10 | -0.78 | -0.82 | 1.1 | -1.7 | -0.6 | -1.31 | 3.43 |
2012-11 | 2.23 | 0.01 | 1.3 | 0.71 | 2.01 | 0.55 | -1.4 |
2012-12 | -0.87 | 1.8 | 0.4 | 1.09 | 1.49 | 1.53 | 3.56 |
2013-01 | 5.25 | 6.5 | 0.5 | 5.65 | 6.15 | 0.57 | 0.68 |
2013-02 | 1.67 | 1.09 | 0.8 | 1.27 | 2.07 | 0.07 | -0.04 |
2013-03 | 4.78 | 2.88 | 0.8 | 4.07 | 4.87 | 0.54 | 0.08 |
2013-04 | 3.16 | 0.7 | 0.5 | 1.57 | 2.07 | -2.2 | -0.05 |
2013-05 | 1.12 | 1.51 | 0.2 | 2.64 | 2.84 | 2.3 | 0.91 |
2013-06 | -0.07 | -1.71 | 0.3 | -1.12 | -0.82 | 1.44 | -0.48 |
2013-07 | 5.1 | 5.44 | 0.2 | 5.63 | 5.83 | 1.26 | 0.88 |
2013-08 | -3.86 | -2.29 | 0.4 | -2.65 | -2.25 | 0.06 | -2.17 |
2013-09 | 3.74 | 3.4 | 0.2 | 3.74 | 3.94 | 2.39 | -1.7 |
2013-10 | 4.52 | 4.44 | 1.1 | 4.23 | 5.33 | -1.4 | 1.01 |
2013-11 | 2.66 | 1.52 | 0.5 | 3.13 | 3.63 | 1 | 0.24 |
2013-12 | 1.12 | 2.83 | 0.2 | 2.7 | 2.9 | -0.57 | -0.39 |
2014-01 | -5.95 | -4.26 | 0.2 | -3.2 | -3 | 0.83 | -1.99 |
2014-02 | 4.92 | 5.13 | 0.5 | 4.57 | 5.07 | 0.27 | -0.85 |
2014-03 | 0.68 | 1.39 | 0.5 | 0.39 | 0.89 | -1.04 | 4.83 |
2014-04 | -0.04 | 2.96 | 0.2 | -0.13 | 0.07 | -3.91 | 2.69 |
2014-05 | 1.79 | 0.96 | 0.3 | 2.17 | 2.47 | -1.79 | -0.37 |
2014-06 | 1.55 | 3 | 0.2 | 2.69 | 2.89 | 2.83 | -0.67 |
2014-07 | -3.26 | -4.34 | 0.2 | -2.08 | -1.88 | -3.93 | -0.16 |
2014-08 | 5.33 | 3.97 | 0.3 | 4.21 | 4.51 | 0.69 | -1.11 |
2014-09 | -1.7 | -4.55 | 0.1 | -2 | -1.9 | -3.67 | -1.72 |
2014-10 | 2.95 | 0.73 | 0.2 | 2.35 | 2.55 | 3.08 | -0.45 |
2014-11 | 6.27 | -2.03 | 0.4 | 2.41 | 2.81 | -2.3 | -3.73 |
2014-12 | 0.09 | 0.36 | 0.3 | -0.22 | 0.08 | 2.24 | 1.15 |
2015-01 | -0.76 | -3.11 | 0.2 | -2.95 | -2.75 | -0.73 | -4.73 |
2015-02 | 5.58 | 3.83 | 0.2 | 6.11 | 6.31 | 1 | -0.29 |
2015-03 | -0.47 | -1.9 | 0.2 | -1.14 | -0.94 | 2.38 | -0.88 |
2015-04 | -1.09 | 1.76 | 0.2 | 0.75 | 0.95 | -2 | 4.17 |
2015-05 | 1.12 | -1.15 | 0.1 | 1.28 | 1.38 | 0.29 | -3.53 |
2015-06 | -0.92 | -3.06 | 0 | -1.62 | -1.62 | 2.68 | -1.42 |
2015-07 | 4.18 | -3.28 | 0.3 | 1.41 | 1.71 | -4.16 | -4.77 |
With the help of given information in the above table, let us calculate the average and standard for column label.
The average has to be calculated using the above formula in each of column.
The formula used is to calculate standard deviation is as follows:
Where
S=Sample standard deviation
n=The number of observations
x= The observed mean values of a sample item
The total depicts the sum of the values of 36 months. The formula of average and standard deviation is used to calculate the values for the above said columns.
Particulars | Consumer | Manufacturing | Risk-free rate | Rm-RF | Market return | SMB | HML |
Total | 53.59 | 27.97 | 14.7 | 51.23 | 65.93 | 0.21 | -7.12 |
Average | 1.4886 | 0.7769 | 0.4083 | 1.4232 | 1.8314 | 0.0058 | -0.1978 |
Standard deviation | 2.834 | 2.900 | 0.307 | 2.537 | 9.918 | 1.984 | 2.18 |
Having the values of average and standard deviation, let us now calculate the Beta, Sharpe ratio, Treynor ratio and Jenson ratio. The formulas to be used are as follows:
?where:
Covariance=Measure of a stock’s return relative to that of the market Variance=Measure of how the market moves relativeto its mean?
Sharpe ratio:
Where
S= Sharpe ratio
Rp= Return earned from portfolio
Rf= Risk-free
sp=Standard deviation of the portfolio’s return
Treynor ratio:
Where
T= Treynor ratio
Rp= Portfolio return
rf= Risk free rate of interest
ßp= Portfolio beta
By using the above said formula, we get the following values.
Particulars | Consumer | Manufacturing | Market return |
Beta | 0.9711 | 0.9684 | 1.0000 |
Sharpe ratio | 0.3811 | 0.1271 | 0.5644 |
Treynor Ratio | -0.3017 | -1.0095 | 1.4231 |
From the above calculation, it is clear that the consumer industry has a record of good performance than the manufacturing. Even then its performance can be judged as below the benchmark.
b.
To compute: The alpha plus residual returns using the Fama-French three factor model.
Introduction:
Alpha: Symbolically, alpha is denoted as ‘a’. It is supposed to be the difference amount that is got from deducting the actual return from the expected return. The selection of the portfolio is made when its alpha is the highest
Treynor ratio: It is named after its creator’s name Jack Treynor who is an American economist. Treynor ratio tries to explore the amount of return which is generated in excess. This also is calculated for risk per unit.
b.
Answer to Problem 22PS
The consumer industry has a record of good performance than the manufacturing. Even then its performance can be judged as below the benchmark.
Explanation of Solution
The information given to us is as follows:
Month | Consumer | Manufacturing | Risk-free rate | Rm-RF | Market return | SMB | HML |
2012-08 | 1.84 | 1.82 | 0.9 | 2.58 | 3.48 | 0.5 | 0.79 |
2012-09 | 1.71 | 2.44 | 0.7 | 2.69 | 3.39 | 0.72 | 1.36 |
2012-10 | -0.78 | -0.82 | 1.1 | -1.7 | -0.6 | -1.31 | 3.43 |
2012-11 | 2.23 | 0.01 | 1.3 | 0.71 | 2.01 | 0.55 | -1.4 |
2012-12 | -0.87 | 1.8 | 0.4 | 1.09 | 1.49 | 1.53 | 3.56 |
2013-01 | 5.25 | 6.5 | 0.5 | 5.65 | 6.15 | 0.57 | 0.68 |
2013-02 | 1.67 | 1.09 | 0.8 | 1.27 | 2.07 | 0.07 | -0.04 |
2013-03 | 4.78 | 2.88 | 0.8 | 4.07 | 4.87 | 0.54 | 0.08 |
2013-04 | 3.16 | 0.7 | 0.5 | 1.57 | 2.07 | -2.2 | -0.05 |
2013-05 | 1.12 | 1.51 | 0.2 | 2.64 | 2.84 | 2.3 | 0.91 |
2013-06 | -0.07 | -1.71 | 0.3 | -1.12 | -0.82 | 1.44 | -0.48 |
2013-07 | 5.1 | 5.44 | 0.2 | 5.63 | 5.83 | 1.26 | 0.88 |
2013-08 | -3.86 | -2.29 | 0.4 | -2.65 | -2.25 | 0.06 | -2.17 |
2013-09 | 3.74 | 3.4 | 0.2 | 3.74 | 3.94 | 2.39 | -1.7 |
2013-10 | 4.52 | 4.44 | 1.1 | 4.23 | 5.33 | -1.4 | 1.01 |
2013-11 | 2.66 | 1.52 | 0.5 | 3.13 | 3.63 | 1 | 0.24 |
2013-12 | 1.12 | 2.83 | 0.2 | 2.7 | 2.9 | -0.57 | -0.39 |
2014-01 | -5.95 | -4.26 | 0.2 | -3.2 | -3 | 0.83 | -1.99 |
2014-02 | 4.92 | 5.13 | 0.5 | 4.57 | 5.07 | 0.27 | -0.85 |
2014-03 | 0.68 | 1.39 | 0.5 | 0.39 | 0.89 | -1.04 | 4.83 |
2014-04 | -0.04 | 2.96 | 0.2 | -0.13 | 0.07 | -3.91 | 2.69 |
2014-05 | 1.79 | 0.96 | 0.3 | 2.17 | 2.47 | -1.79 | -0.37 |
2014-06 | 1.55 | 3 | 0.2 | 2.69 | 2.89 | 2.83 | -0.67 |
2014-07 | -3.26 | -4.34 | 0.2 | -2.08 | -1.88 | -3.93 | -0.16 |
2014-08 | 5.33 | 3.97 | 0.3 | 4.21 | 4.51 | 0.69 | -1.11 |
2014-09 | -1.7 | -4.55 | 0.1 | -2 | -1.9 | -3.67 | -1.72 |
2014-10 | 2.95 | 0.73 | 0.2 | 2.35 | 2.55 | 3.08 | -0.45 |
2014-11 | 6.27 | -2.03 | 0.4 | 2.41 | 2.81 | -2.3 | -3.73 |
2014-12 | 0.09 | 0.36 | 0.3 | -0.22 | 0.08 | 2.24 | 1.15 |
2015-01 | -0.76 | -3.11 | 0.2 | -2.95 | -2.75 | -0.73 | -4.73 |
2015-02 | 5.58 | 3.83 | 0.2 | 6.11 | 6.31 | 1 | -0.29 |
2015-03 | -0.47 | -1.9 | 0.2 | -1.14 | -0.94 | 2.38 | -0.88 |
2015-04 | -1.09 | 1.76 | 0.2 | 0.75 | 0.95 | -2 | 4.17 |
2015-05 | 1.12 | -1.15 | 0.1 | 1.28 | 1.38 | 0.29 | -3.53 |
2015-06 | -0.92 | -3.06 | 0 | -1.62 | -1.62 | 2.68 | -1.42 |
2015-07 | 4.18 | -3.28 | 0.3 | 1.41 | 1.71 | -4.16 | -4.77 |
The Fama-French three factor model suggests the usage of market risk, size of the company and company’s book to market value to calculate the returns. The formula to be used to calculate the required returns is Jenson’s Alpha ratio.
Jensen's Alpha Ratio:
By using the above said formula, we get the following values.
Particulars | Consumer | Manufacturing | Market return |
Jenson’s Alpha Ratio | 1.3377 | 0.6300 | 1.6394 |
From the above calculation, it is clear that the consumer industry has a record of good performance than the manufacturing. Even then its performance can be judged as below the benchmark.
Want to see more full solutions like this?
Chapter 24 Solutions
EBK INVESTMENTS
- PLEASE ANSWER ALL THE QUESTIONS Question 1 Fill the parts in the above table that are shaded in yellow. You will notice that there are nine line items. Question 2 Using the data generated in the previous question (Question 1);a) Plot the Security Market Line (SML) b) Superimpose the CAPM’s required return on the SML c) Indicate which investments will plot on, above and below the SML? d) If an investment’s expected return (mean return) does not plot on the SML, what does it show? Identify undervalued/overvalued investments from the graph Question 3 From the information generated in the previous two questions; a) Identify two investment alternatives that can be combined in a portfolio. Assume a 50-50 investment allocation in each investment alternative. b) Compute the expected return of the portfolio thus formed. c) Compute the portfolio’s beta. Is the portfolio aggressive or defensive?arrow_forwardYou are a portfolio manager who uses options positions to customize the risk profile of your clients. In each case, what strategy is best given your client's objective? Required: a. • Performance to date: Up 16%. • • • © Client objective: Earn at least 15%. Your forecast: Good chance of major market movements, either up or down, between now and end of the year. b. Performance to date: Up 16%. • • © Client objective: Earn at least 15%. Your forecast: Good chance of a major market decline between now and end of year. a. What strategy is best given your client's objective? b. What strategy is best given your client's objective?arrow_forwardShow your work (use of formula, etc.) in solving the problem. Provide your answer/solution in the answer space provided below. Answer the question: Given the following historical returns, calculate the average return and the standard deviation: Year Return 1 14% 2 10% 3 15% 4 11%arrow_forward
- Please answer all A , B and Carrow_forwardYou are evaluating the performance of two portfolio managers, and you have gathered annual return data for the past decade: Year Manager X Return (%) Manager Y Return (%) 1 -1.5 -6.5 -1.5 -3.5 3 -1.5 -1.5 4 -1.0 3.5 5 0.0 4.5 4.5 6.5 7 6.5 7.5 8 8.5 8.5 13.5 12.5 10 18.5 14.5 a. For each manager, calculate (1) the average annual return, (2) the standard deviation of returns, and (3) the semi-deviation of returns. Do not round intermediate calculations. Round your answers to two decimal places. Average annual return Standard deviation of returns Semi-deviation of returns Manager X % % % Manager Y % % % b. Assuming that the average annual risk-free rate during the 10-year sample period was 3.0%, calculate the Sharpe ratio for each portfolio. Based on these computations, which manager appears to have performed the best? Do not round intermediate calculations. Round your answers to three decimal places. Sharpe ratio (Manager X): Sharpe ratio (Manager Y): Based on Sharpe ratio -Select- )…arrow_forwardYou are evaluating the performance of two portfolio managers, and you have gathered annual return data for the past decade: Year Manager X Return (%) Manager Y Return (%) 1 -1.5 -6.5 2 -1.5 -3.5 3 -1.5 -1.5 4 -1.0 3.5 5 0.0 4.5 6 4.5 6.5 7 6.5 7.5 8 8.5 8.5 9 13.5 12.5 10 17.5 13.5 a. For each manager, calculate the average annual return, the standard deviation of returns, and the semi-deviation of returns. b. Assuming that the average annual risk-free rate during the 10-year sample period was 1.5 percent, calculate the Sharpe ratio for each portfolio. Based on these computations, which manager appears to have performed the best? c. Calculate the Sortino ratio for each portfolio, using the average risk-free rate as the minimum acceptable return threshold. Based on these computations, which manager appears to have performed the best? d. When would you expect the Sharpe and…arrow_forward
- You are evaluating the performance of two portfolio managers, and you have gathered annual return data for the past decade: Year Manager X Return (%) Manager Y Return (%) 1 -2.5 -6.5 2 -2.5 -5.5 3 -2.5 -2.0 4 -2.0 4.0 5 0.0 5.5 6 5.5 6.5 7 7.5 7.5 8 9.5 8.5 9 13.5 12.5 10 18.5 14.5 For each manager, calculate (1) the average annual return, (2) the standard deviation of returns, and (3) the semi-deviation of returns. Do not round intermediate calculations. Round your answers to two decimal places. Average annual return Standard deviation of returns Semi-deviation of returns Manager X % % % Manager Y % % % Assuming that the average annual risk-free rate during the 10-year sample period was 1.0%, calculate the Sharpe ratio for each portfolio. Based on these computations, which manager appears to have performed the best? Do not round intermediate calculations. Round your…arrow_forwardNeed help on allarrow_forwardConsider the following information regarding the performance of a money manager in a recent month. The table represents the actual return of each sector of the manager's portfolio in column 1 , the fraction of the portfolio allocated to each sector in column 2 , the benchmark or neutral sector allocations in column 3 , and the returns of sector indices in column 4. \table[[,Actual,Benchmark],[Return,Actual Weight,Weight,Index Return,],[Equity,2.2%,0.4,0.5,2.7%arrow_forward
- You have been asked for your advice in selecting a portfolio of assets and have been supplied with the following data:. You have been told that you can create two portfolios-one consisting of assets A and B and the other consisting of assets A and C-by investing equal proportions (50%) in each of the two component assets. a. What is the average expected return, r, for each asset over the 3-year period? b. What is the standard deviation, s, for each asset's expected return? c. What is the average expected return, rp, for each of the portfolios? d. How would you characterize the correlations of returns of the two assets making up each of the portfolios identified in part c? e. What is the standard deviation of expected returns, Sp, for each portfolio? f. What would happen if you constructed a portfolio consisting of assets A, B, and C, equally weighted? Would this reduce risk or enhance return?arrow_forwardplease help me check my work and help solve any unsolved questions, thanks!arrow_forwardConsider the following time series data: Construct a time series plot. What type of pattern exists in the data? Use a multiple regression model with dummy variables as follows to develop an equation to account for seasonal effects in the data: Qtr1 = 1 if quarter 1, 0 otherwise; Qtr2 = 1 if quarter 2. 0 otherwise; Qtr3 = 1 if quarter 3, 0 otherwise. Compute the quarterly forecasts for next year based on the model you developed in part (b). Use a multiple regression model to develop an equation to account for trend and seasonal effects in the data. Use the dummy variables you developed in part (b) to capture seasonal effects and create a variable t such that t = 1 for quarter 1 in year 1, t = 2 for quarter 2 in year 1, … t = 12 for quarter 4 in year 3. Compute the quarterly forecasts for next year based on the model you developed in part (d). Is the model you developed in part (b) or the model you developed in part (d) more effective? Justify your answer.arrow_forward
- Essentials of Business Analytics (MindTap Course ...StatisticsISBN:9781305627734Author:Jeffrey D. Camm, James J. Cochran, Michael J. Fry, Jeffrey W. Ohlmann, David R. AndersonPublisher:Cengage LearningCornerstones of Financial AccountingAccountingISBN:9781337690881Author:Jay Rich, Jeff JonesPublisher:Cengage LearningEBK CONTEMPORARY FINANCIAL MANAGEMENTFinanceISBN:9781337514835Author:MOYERPublisher:CENGAGE LEARNING - CONSIGNMENT
- Essentials Of Business AnalyticsStatisticsISBN:9781285187273Author:Camm, Jeff.Publisher:Cengage Learning,