Introduction to Algorithms
3rd Edition
ISBN: 9780262033848
Author: Thomas H. Cormen, Ronald L. Rivest, Charles E. Leiserson, Clifford Stein
Publisher: MIT Press
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 23.1, Problem 7E
Program Plan Intro
To show that any subset of edges that connects all vertices and has minimum total weight must be a tree and by using an example show that it is not true for some weights to be non-positive.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Let G be a graph with n vertices. If the maximum size of an independent set in G is k, clearly explain why the minimum size of a vertex cover in G is n - k.
Let w be the minimum weight among all edge weights in an un-directed connected graph. Let e be a specific edge of weight w.
Which of the following statements is/are TRUE/FALSE? Please discuss each of these statements on why that statement is True/False.
a. Every minimum spanning tree has an edge of weight wb. If e is not in a minimum spanning tree T, then in the cycle formed by adding e to T, all edges have the same weightc. There is a minimum spanning tree containing e.d. e is present in every minimum spanning tree
Be G=(V, E)a connected graph and u, vEV. The distance Come in u and v, denoted by d(u, v), is
the length of the shortest path between u'and v, Meanwhile he width from G, denoted as A(G), is
the greatest distance between two of its vertices.
a) Show that if A(G) 24 then A(G) <2.
b) Show that if G has a cut vertex and A(G) = 2, then Ġhas a vertex with no
neighbors.
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.Similar questions
- Given a graph that is a tree (connected and acyclic). (I) Pick any vertex v.(II) Compute the shortest path from v to every other vertex. Let w be the vertex with the largest shortest path distance.(III) Compute the shortest path from w to every other vertex. Let x be the vertex with the largest shortest path distance. Consider the path p from w to x. Which of the following are truea. p is the longest path in the graphb. p is the shortest path in the graphc. p can be calculated in time linear in the number of edges/verticesarrow_forwardConsider a graph G, where each of the edges have different weights. Let T1 be the minimum-weight spanning tree produced by Kruskal's Algorithm, and let T2 be the minimum-weight spanning tree produced by Prim's Algorithm. I claim that T1 and T2 must be identical spanning trees - i.e., the exact same set of edges must appear in both trees. Determine whether this claim is TRUE or FALSE. If your answer is TRUE, see if you can figure out why the claim is true. If your answer is FALSE, see if you can come up with a counterexample.arrow_forwardYou are given a weighted tree T.(As a reminder, a tree T is a graph that is connected and contains no cycle.) Each node of the tree T has a weight, denoted by w(v). You want to select a subset of tree nodes, such that weight of the selected nodes is maximized, and if a node is selected, then none of its neighbors are selected.arrow_forward
- Please give an explanation as to why your answer is correct.arrow_forwardGiven a graph that is a tree (connected and acyclic). (1) Pick any vertex v. (II) Compute the shortest path from v to every other vertex. Let w be the vertex with the largest shortest path distance. (III) Compute the shortest path from w to every other vertex. Let x be the vertex with the largest shortest path distance. Consider the path p from w to x. Which of the following are true a. p is the longest path in the graph b. p is the shortest path in the graph c. p can be calculated in time linear in the number of edges/vertices a,c a,b a,b,c b.carrow_forwardLet G be a graph, where each edge has a weight. A spanning tree is a set of edges that connects all the vertices together, so that there exists a path between any pair of vertices in the graph. A minimum-weight spanning tree is a spanning tree whose sum of edge weights is as small as possible. Last week we saw how Kruskal's Algorithm can be applied to any graph to generate a minimum-weight spanning tree. In this question, you will apply Prim's Algorithm on the graph below. You must start with vertex A. H 4 4 1 3 J 2 C 10 4 8 B 9 F 18 8 There are nine edges in the spanning tree produced by Prim's Algorithm, including AB, BC, and IJ. Determine the exact order in which these nine edges are added to form the minimum-weight spanning tree. 3.arrow_forward
- Let G be a graph, where each edge has a weight. A spanning tree is a set of edges that connects all the vertices together, so that there exists a path between any pair of vertices in the graph. A minimum-weight spanning tree is a spanning tree whose sum of edge weights is as small as possible. Last week we saw how Kruskal's Algorithm can be applied to any graph to generate a minimum-weight spanning tree. In this question, you will apply Prim's Algorithm on the same graph from the previous quiz. You must start with vertex A. H 4 G D J 9 4 7 10 6 8 В F A 18 E There are nine edges in the spanning tree produced by Prim's Algorithm, including AB, BC, and IJ. Determine the exact order in which these nine edges are added to form the minimum-weight spanning tree. 3.arrow_forwardLet G = (V, E) be an undirected graph and each edge e ∈ E is associated with a positive weight ℓ(e).For simplicity we assume weights are distinct. Is the following statement true or false? Let T be a minimum spanning tree for the graph with the original weight. Suppose we replace eachedge weight ℓ(e) with ℓ(e)^2, then T is still a minimum spanning tree.arrow_forwardLet G = (V, E) be an undirected graph and each edge e ∈ E is associated with a positive weight ℓ(e).For simplicity we assume weights are distinct. Is the following statement true or false? Prove by contradiction or counterexample. Let T be a minimum spanning tree for the graph with the original weight. Suppose we replace eachedge weight ℓ(e) with ℓ(e)^2, then T is still a minimum spanning tree.arrow_forward
- Let G = (V, E) be an undirected and connected graph, where each edge (u, v) E E has a weight wt(u, v) > 0. Moreover, assume that all weights are equal. (a) G. The running time of your algorithm must be faster than the running time of Kruskal's algorithm. Design an algorithm to compute a minimum spanning tree (MST) of You must describe your algorithm in plain English (no pseudocode). You must write the running time of your algorithm and explain why you get this running time. (b) In at most 50 words, explain why your algorithm is correct.arrow_forwardAssume you have been given a graph with 1 minimum spanning tree and no repeated edge weights. Using the min-cut theorem, prove Boruvka's algorithm is correct. The pseudocode is attached.arrow_forwardThe minimum vertex cover problem is stated as follows: Given an undirected graph G = (V, E) with N vertices and M edges. Find a minimal size subset of vertices X from V such that every edge (u, v) in E is incident on at least one vertex in X. In other words you want to find a minimal subset of vertices that together touch all the edges. For example, the set of vertices X = {a,c} constitutes a minimum vertex cover for the following graph: a---b---c---g d e Formulate the minimum vertex cover problem as a Genetic Algorithm or another form of evolutionary optimization. You may use binary representation, OR any repre- sentation that you think is more appropriate. you should specify: • A fitness function. Give 3 examples of individuals and their fitness values if you are solving the above example. • A set of mutation and/or crossover and/or repair operators. Intelligent operators that are suitable for this particular domain will earn more credit. • A termination criterion for the…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Database System ConceptsComputer ScienceISBN:9780078022159Author:Abraham Silberschatz Professor, Henry F. Korth, S. SudarshanPublisher:McGraw-Hill EducationStarting Out with Python (4th Edition)Computer ScienceISBN:9780134444321Author:Tony GaddisPublisher:PEARSONDigital Fundamentals (11th Edition)Computer ScienceISBN:9780132737968Author:Thomas L. FloydPublisher:PEARSON
- C How to Program (8th Edition)Computer ScienceISBN:9780133976892Author:Paul J. Deitel, Harvey DeitelPublisher:PEARSONDatabase Systems: Design, Implementation, & Manag...Computer ScienceISBN:9781337627900Author:Carlos Coronel, Steven MorrisPublisher:Cengage LearningProgrammable Logic ControllersComputer ScienceISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
Database System Concepts
Computer Science
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:McGraw-Hill Education
Starting Out with Python (4th Edition)
Computer Science
ISBN:9780134444321
Author:Tony Gaddis
Publisher:PEARSON
Digital Fundamentals (11th Edition)
Computer Science
ISBN:9780132737968
Author:Thomas L. Floyd
Publisher:PEARSON
C How to Program (8th Edition)
Computer Science
ISBN:9780133976892
Author:Paul J. Deitel, Harvey Deitel
Publisher:PEARSON
Database Systems: Design, Implementation, & Manag...
Computer Science
ISBN:9781337627900
Author:Carlos Coronel, Steven Morris
Publisher:Cengage Learning
Programmable Logic Controllers
Computer Science
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education