Astronomy
1st Edition
ISBN: 9781938168284
Author: Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher: OpenStax
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 23, Problem 9E
Apart from the masses, how are binary systems with a neutron star different from binary systems with a white dwarf?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
What is the size of a typical white dwarf?
Group of answer choices
1.0 solar radii
0.5 solar radii
0.1 solar radii (roughly the size of Jupiter)
0.01 solar radii (roughly the size of Earth)
5 solar radii
A 1.5 M neutron star and a 0.7 M white dwarf have been found orbiting each other with a period of 10 minutes. What is their average separation? Convert your answer to units of the Sun's radius, which is 0.0047 AU.
What is the free-fall time of a 10 MSun main-sequence star?
O 100 hours
O 10 hours
O 1 hour
O 0.1 hours
Chapter 23 Solutions
Astronomy
Ch. 23 - How does a white dwarf differ from a neutron star?...Ch. 23 - Describe the evolution of a star with a mass like...Ch. 23 - Describe the evolution of a massive star (say, 20...Ch. 23 - How do the two types of supernovae discussed in...Ch. 23 - A star begins its life with a mass of 5 MSunbut...Ch. 23 - If the formation of a neutron star leads to a...Ch. 23 - How can the Crab Nebula shine with the energy of...Ch. 23 - How is a nova different from a type Ia supernova?...Ch. 23 - Apart from the masses, how are binary systems with...Ch. 23 - What observations from SN 1987A helped confirm...
Ch. 23 - Describe the evolution of a white dwarf over time,...Ch. 23 - Describe the evolution of a pulsar over time, in...Ch. 23 - How would a white dwarf that formed from a star...Ch. 23 - What do astronomers think are the causes of...Ch. 23 - How did astronomers finally solve the mystery of...Ch. 23 - Arrange the following stars in order of their...Ch. 23 - Would you expect to find any white dwarfs in the...Ch. 23 - Suppose no stars more massive than about 2 MSunhad...Ch. 23 - Would you be more likely to observe a type II...Ch. 23 - Astronomers believe there are something like 100...Ch. 23 - Would you expect to observe every supernova in our...Ch. 23 - The Large Magellanic Cloud has about one-tenth the...Ch. 23 - Look at the list of the nearest stars in Appendix...Ch. 23 - If most stars become white dwarfs at the ends of...Ch. 23 - If a 3 and 8 MSunstar formed together in a binary...Ch. 23 - You have discovered two star clusters. The first...Ch. 23 - A supernova remnant was recently discovered and...Ch. 23 - Based upon the evolution of stars, place the...Ch. 23 - What observations or types of telescopes would you...Ch. 23 - How would the spectra of a type II supernova be...Ch. 23 - The ring around SN 1987A (Figure 23.12) initially...Ch. 23 - What is the acceleration of gravity (g) at the...Ch. 23 - What is the escape velocity from the Sun? How much...Ch. 23 - What is the average density of the Sun? How does...Ch. 23 - Say that a particular white dwarf has the mass of...Ch. 23 - What is the escape velocity from the white dwarf...Ch. 23 - What is the average density of the white dwarf in...Ch. 23 - Now take a neutron star that has twice the mass of...Ch. 23 - What is the escape velocity from the neutron star...Ch. 23 - What is the average density of the neutron star in...Ch. 23 - One way to calculate the radius of a star is to...Ch. 23 - According to a model described in the text, a...Ch. 23 - Do the same calculations as in Exercise 23.42 but...Ch. 23 - If the Sun were replaced by a white dwarf with a...Ch. 23 - A supernova can eject material at a velocity of...Ch. 23 - A supernova remnant was observed in 2007 to be...Ch. 23 - The ring around SN 1987A (Figure 23.12) started...Ch. 23 - Before the star that became SN 1987A exploded, it...Ch. 23 - What is the radius of the progenitor star that...Ch. 23 - What is the acceleration of gravity at the surface...Ch. 23 - What was the escape velocity from the surface of...Ch. 23 - What was the average density of the star that...Ch. 23 - If the pulsar shown in Figure 23.16 is rotating...
Additional Science Textbook Solutions
Find more solutions based on key concepts
17 An electron is to be accelerated from 3.00 × 108 m/s to 8.00 × 108 m/s. Through what potential difference mu...
College Physics (10th Edition)
At what angle should you tilt an air table to simulate free fall at the surface of Mars, where g = 3.71 m/s2?
Essential University Physics: Volume 1 (3rd Edition)
Check Your Understanding The current density is proportional to the current and inversely proportional to the a...
University Physics Volume 2
If nitrogen were a greenhouse gas, our planet would be far hotter than it is.
Life in the Universe (4th Edition)
15. (II) A 0.25-kg mass at the end of a spring oscillates 2.2 times per second with an amplitude of 0.15 m. Det...
Physics: Principles with Applications
Star B has an apparent magnitude of 0, which tells us how bright it appears from Earth at its true location. St...
Lecture- Tutorials for Introductory Astronomy
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- How does a white dwarf differ from a neutron star? How does each form? What keeps each from collapsing under its own weight?arrow_forwardWhat observations or types of telescopes would you use to distinguish a binary system that includes a main-sequence star and a white dwarf star from one containing a main-sequence star and a neutron star?arrow_forwardHow would a white dwarf that formed from a star that had an initial mass of 1 MSunbe different from a white dwarf that formed from a star that had an initial mass of 9 MSun?arrow_forward
- A visual binary has a parallax of 0.4 arcseconds, a maximum separation a = 6.0 arcseconds, and an orbital period P = 80 years. What is the total mass of the binary system in units of Mo, assuming a circular orbit?arrow_forwardHow does a white dwarf differ from a neutron star? (Select all that apply.) A white dwarf is less massive than a neutron star. A neutron star is denser than a white dwarf .A neutron star is less massive than a white dwarf. A neutron star has a smaller radius than a white dwarf .A white dwarf is denser than a neutron star .A white dwarf has a smaller radius than a neutron star.arrow_forwardA typical white dwarf has a mass of about 1.0MSunMSun and the radius of Earth (about 6400 kilometers). Calculate the average density of a white dwarf, in kilograms per cubic centimeter.arrow_forward
- One way to calculate the radius of a star is to use its luminosity and temperature and assume that the star radiates approximately like a blackbody. Astronomers have measured the characteristics of central stars of planetary nebulae and have found that a typical central star is 16 times as luminous and 20 times as hot (about 110,000 K) as the Sun. Find the radius in terms of the Sun’s. How does this radius compare with that of a typical white dwarf?arrow_forwardGenerally speaking, a low-mass star ends up as a white dwarf while a high-mass explodes. Why/How does the amount of mass determine the star's fate?arrow_forwardExplain how some stars form in binary systems. ...arrow_forward
- If an X-ray binary consists of a 10-solar-mass star and a neutron star orbiting each other every 20.8 days, what is their average separation? (Hints: Use the version of Kepler's third law for binary stars, M, + M3 = ; make sure you express quantities in units of AU, solar masses, and years. Assume the mass of the neutron star is 1.6 solar masses.) a3 AUarrow_forwardBetelgeuse is a red giant at a distance of 428 light years. In the future it will become a supernova similar to Tycho's supernova which was observed in 1572 and lies at a distance of 9800 light years. At its peak, its brightness was similar to that of Venus (which has a peak apparent magnitude of -4). What might we expect the peak apparent magnitude of the Betelgeuse supernova explosion to be?arrow_forwardWhat is the luminosity, in solar units, of a brown dwarf whose radius is 0.1 solar radii and whose surface temperature is 600 K (0.1 times that of the Sun)?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningStars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning